首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We reported the synthesis and morphology of a novel alkyne‐functionalized diblock copolymer (di‐BCP) poly(methyl methacrylate‐random‐propargyl methacrylate)‐block‐poly(4‐bromostyrene). The di‐BCPs were synthesized by atom transfer radical polymerization and postpolymerization deprotection, with good control over molecular weight and polydispersity index. Microphase separation in bulk di‐BCPs was confirmed by thermal analysis, small‐angle X‐ray scattering, and transmission electron microscopy. Microphase‐separated morphologies were also observed in thin films, and the orientation of the microdomains can be conveniently controlled by annealing under different solvents. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

2.
Solvent vapor annealing (SVA) is one route to prepare block copolymer (BCP) thin films with long‐range lateral ordering. The lattice defects in the spin‐coated BCP thin film can be effectively and rapidly reduced using SVA. The solvent evaporation after annealing was shown to have a significant impact on the in‐plane ordering of BCP microdomains. However, the effect of solvent evaporation on the out‐of‐plane defects in BCPs has not been considered. Using grazing‐incidence x‐ray scattering, the morphology evolution of lamellae‐forming poly(2‐vinlypyridine)‐b‐polystyrene‐b‐poly(2vinylpyridine) triblock copolymers, having lamellar microdomains oriented normal to substrate surface during SVA, was studied in this work. A micelle to lamellae transformation was observed during solvent uptake. The influence of solvent swelling ratio and solvent removal rate on both the in‐plane and out‐of‐plane defect density was studied. It shows that there is a trade‐off between the in‐plane and out‐of‐plane defect densities during solvent evaporation. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 980–989  相似文献   

3.
Self‐assembly of diblock copolymers (BCP) into periodic arrays is a promising route to generate templates for the fabrication of nanoscopic elements, when one block is selectively removed. In cylindrical morphology polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA) copolymer (BCP) films, the efficiency of different processes for removing the PMMA from cylinders is studied using grazing incidence small angle X‐ray scattering (GISAXS), x‐ray reflectivity and critical dimension scanning electron microscopy. The detailed analysis of the GISAXS patterns leads to the determination of the depth of cylindrical holes left by removal of the PMMA. It is found that the combination of a preliminary UV exposure followed by a wet treatment allows to remove totally the PMMA blocks. Furthermore, the optimization of both UV exposition time and solvent allows to preserve the PS matrix and interestingly for nanolithographic applications to decrease the process costs. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1137–1144  相似文献   

4.
Directed self‐assembly of block copolymers (BCPs) is a promising candidate for next generation nanolithography. In order to validate a given pattern, the lateral and in‐depth distributions of the blocks should be well characterized; for the latter, time‐of‐flight (ToF) SIMS is a particularly well‐adapted technique. Here, we use an ION‐TOF ToF‐SIMS V in negative mode to provide qualitative information on the in‐depth organization of polystyrene‐b‐polymethylmethacrylate (PS‐b‐PMMA) BCP thin films. Using low‐energy Cs+ sputtering and Bi3+ as the analysis ions, PS and PMMA homopolymer films are first analyzed in order to identify the characteristic secondary ions for each block. PS‐b‐PMMA BCPs are then characterized showing that self‐assembled nanodomains are clearly observed after annealing. We also demonstrate that the ToF‐SIMS technique is able to distinguish between the different morphologies of BCP investigated in this work (lamellae, spheres or cylinders). ToF‐SIMS characterization on BCP is in good agreement with XPS analysis performed on the same samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
We here reported the dual melting behaviors with a large temperature difference more than 50 °C without discernible recrystallization endothermic peak in isomorphous poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (P(HB‐co‐HV)) with a high HV content of 36.2 mol %, and the structure evolution upon heating was monitored by in situ synchrotron wide‐angle X‐ray diffraction/small‐angle X‐ray scattering (WAXD/SAXS) to unveil the essence of such double endothermic phenomena. It illustrated that the thinner lamellae with the larger unit cell and the thicker crystals having the smaller unit cell were melted around the first low and second high melting ranges, respectively. By analyzing in situ WAXD/SAXS data, and then coupling the features of melting behavior, the evolution of the parameters of both crystal unit cell and lamellar crystals, we proposed that the thinner unstable lamellae possess a uniform structure with HV units total inclusion, and the thicker stable lamellae reflect the sandwich structure with HV units partial inclusion. It further affirmed that the thicker sandwich and thinner uniform lamellae formed during the cooling and subsequent isothermal crystallization processes, respectively. These findings fully verify that it is the change of structure of lamellae rather than the melting/recrystallization that is responsible for double melting peaks of isomorphous P(HB‐co‐36.2%HV), and enhance our understanding upon multiple endothermic behaviors of polymers. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1453–1461  相似文献   

6.
Polyethylene‐block‐poly(methyl methacrylate) (PE‐b‐PMMA) was successfully synthesized through the combination of metallocene catalysis with living radical polymerization. Terminally hydroxylated polyethylene, prepared by ethylene/allyl alcohol copolymerization with a specific zirconium metallocene/methylaluminoxane/triethylaluminum catalyst system, was treated with 2‐bromoisobutyryl bromide to produce terminally esterified polyethylene (PE‐Br). With the resulting PE‐Br as an initiator for transition‐metal‐mediated living radical polymerization, methyl methacrylate polymerization was subsequently performed with CuBr or RuCl2(PPh3)3 as a catalyst. Then, PE‐b‐PMMA block copolymers of different poly(methyl methacrylate) (PMMA) contents were prepared. Transmission electron microscopy of the obtained block copolymers revealed unique morphological features that depended on the content of the PMMA segment. The block copolymer possessing 75 wt % PMMA contained 50–100‐nm spherical polyethylene lamellae uniformly dispersed in the PMMA matrix. Moreover, the PE‐b‐PMMA block copolymers effectively compatibilized homopolyethylene and homo‐PMMA at a nanometer level. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3965–3973, 2003  相似文献   

7.
Block copolymer directed self‐assembly (BCP) with chemical epitaxy is a promising lithographic solution for patterning features with critical dimensions under 20 nm. In this work, we study the extent to which lamellae‐forming poly(styrene‐b‐methyl methacrylate) can be directed with chemical contrast patterns when the pitch of the block copolymer is slightly compressed or stretched compared to the equilibrium pitch observed in unpatterned films. Critical dimension small angle X‐ray scattering complemented with SEM analysis was used to quantify the shape and roughness of the line/space features. It was found that the BCP was more lenient to pitch compression than to pitch stretching, tolerating at least 4.9% pitch compression, but only 2.5% pitch stretching before disrupting into dislocation or disclination defects. The more tolerant range of pitch compression is explained by considering the change in free energy with template mismatch, which suggests a larger penalty for pitch stretching than compressing. Additionally, the effect of width mismatch between chemical contrast pattern and BCP is considered for two different pattern transfer techniques. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 595–603  相似文献   

8.
The morphologies of a series of blown films and machine‐direction‐oriented (MDO) films, all produced from high density polyethylene, were characterized. In the blown film process, the crystalline morphology develops while the melt is under extensional stress. In the MDO process, drawing takes place in the solid state and deforms the crystalline morphology of the starting film. The films were characterized by wide‐angle X‐ray scattering (WAXS), small‐angle X‐ray scattering (SAXS) and atomic force microscopy to determine the lamellar morphology. The effect of the type of deformation on the lamellar morphology was studied and relationships were developed between the lamellar and polymer chain morphology using SAXS and WAXS. Blown and MDO films were found to have very different morphologies. However, an integrated mechanism was developed linking the sequential events in the deformation and morphology development in blown and MDO films. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1834–1844, 2007  相似文献   

9.
The objective of this work was to use both X‐ray and differential scanning calorimetry techniques in a comparative study of the lamellar and crystalline structures of heterogeneous and homogeneous ethylene‐α‐copolymers. The samples differed in the comonomer type (1‐butene, 1‐hexene, 1‐octene, and hexadecene), comonomer content, and catalyst used in the polymerizations. Step crystallizations were performed with differential scanning calorimetry, and the crystallinity and lamellar thicknesses of the different crystal populations were determined. Wide‐angle X‐ray scattering was used to determine crystallinities, average sizes of the crystallites, and dimensions of the orthorhombic unit cell. The average thickness, separation of the lamellae, and volume fractions of the crystalline phase were determined by small‐angle X‐ray scattering (SAXS). The results revealed that at densities below 900 kg/m3, polymers were organized as poorly organized crystal bundles. The lamellar distances were smaller and the lamellar thickness distributions were narrower for the homogeneous ethylene copolymers than for the heterogeneous ones. Step‐crystallization experiments by SAXS demonstrated that the long period increased after annealing. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1860–1875, 2001  相似文献   

10.
Nanoparticles provide an attractive route to modifying polymer thin film properties, yet controlling the dispersion and morphology of functionalized nanoparticle filled films is often difficult. Block copolymers can provide an ideal template for directed assembly of nanoparticles under controlled nanoparticle‐polymer interactions. Previously we observed that neat films of cylinder forming poly(styrene‐b‐methyl methacrylate) PS‐b‐PMMA block copolymer (c‐BCP) orient vertically with dynamic sharp thermal cold zone annealing (CZA‐S) over wide range of CZA‐S speed (0.1–10) μm/s. Here, we introduce a low concentration (1–5 wt %) of nanoparticles of phenolic group functionalized CdS (fCdS‐NP), to PMMA cylinder forming polystyrene‐b‐poly (methyl methacrylate) block copolymer (c‐BCP) films. Addition of the fCdS‐NP induces a vertical to horizontal orientation transition at low CZA‐S speed, V = 5 μm/s. The orientation flip studies were analyzed using AFM and GISAXS. These results confirm generality of our previously observed orientation transition in c‐BCP under low speed CZA‐S with other nanoparticles (gold [Au‐NP], fulleropyrrolidine [NCPF‐NP]) in the same concentration range, but reveal new aspects not previously examined: (1) A novel observation of significant vertical order recovery from 5–10% vertical cylindrical fraction at V = 5 μm/s to 46–63% vertical cylindrical fraction occurring at high CZA‐S speed, V = 10 μm/s for the fCdS nanoparticle filled films. (2) We rule out the possibility that a nanoparticle wetting layer on the substrate is responsible for the vertical to horizontal flipping transition. (3) We demonstrate that the orientation flipping results can be achieved in a nanoparticle block copolymer system where the nanoparticles are apparently better‐dispersed within only one (matrix PS) domain unlike our previous nanoparticle system studied. We consider facile processing conditions to fabricate functionalized nanoparticles filled PS‐PMMA block copolymer films with controlled anisotropy, a useful strategy in the design of next generation electronic and photonic materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 604–614  相似文献   

11.
Preparation of functional domains with a spacing of 10 nm is a benchmark set to fabricate next‐generation electronic devices. Organic–inorganic block copolymers form well‐ordered microphase separations with very small domain sizes. The design and preparation of a novel block copolymer consisting of syndiotactic polymethyl methacrylate (st‐PMMA) and polyhedral oligomeric silsesquioxane (POSS)‐functionalized polymethacrylate, designated as st‐PMMA‐b‐PMAPOSS, which can recognize functional molecules, are reported. The st‐PMMA segments form a helical structure and encapsulate C60 in the helical nanocavity, leading to the formation of an inclusion complex. Although the ordering of the domains is not high, C60 domains that are in a quasi‐equilibrium state, with about 10‐nm domain spacings, are generated using st‐PMMA‐b‐PMAPOSS that can recognize functional molecules. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2181–2189  相似文献   

12.
The lamellar structures in uniaxially drawn films of miscible crystalline/crystalline polymer blends of poly(vinylidene fluoride) (PVDF) and poly(3‐hydroxybutyrate) (PHB) were investigated by static and time‐resolved measurements of small‐angle X‐ray scattering (SAXS). Intense SAXS in the low angle range of the meridian was interpreted as originating from the interlamellar inclusion structure, in which the PHB chains were included between the lamellae of PVDF. The interlamellar inclusion was induced for the uniaxially drawn films of PVDF/PHB = 30/70 blend with a draw ratio (DR) of 2.8–4.5, whereas the lamellae of the PVDF and PHB components were mutually excluded from each other forming their own lamellar stacks (interlamellar exclusion) in the blend with a higher DR (5.0–5.7). When the highly drawn film with the interlamellar exclusion structure was heat treated at 154–165 °C, the interlamellar inclusion structure was partially induced by the heat treatment. The time‐resolved SAXS measurements indicated that the interlamellar inclusion structure was developed by melting and recrystallization of PVDF during the heat treatment. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 381–392, 2009  相似文献   

13.
An easily removable, water‐soluble top coat of polyvinylpyrrolidone (PVP) is used to control the orientation of microdomains in a liquid crystalline block copolymer (LC BCP, poly(ethylene oxide)‐block‐poly(6‐(4‐methoxy‐azobenzene‐4′‐butyl) hexyl methacrylate)). The corresponding LC homopolymer is also investigated for comparison. Atomic force microscopy is used to determine the orientation of the cylindrical microdomains of the LC BCP. UV–vis spectroscopy and grazing incidence wide‐angle X‐ray scattering are used to determine the orientation of the LC mesogens in the LC homopolymer and the LC BCP films annealed both with and without a top coat. Once the LC BCP morphology is self‐assembled, the PVP top coat layer can be easily removed with water or alcohol. The facile removal of the top coat improves the processability of BCPs in technological applications, and enables direct investigation of the BCP morphology in scientific studies. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1569–1574  相似文献   

14.
A simple and facile strategy for the functionalization of commercial poly(ε‐caprolactone) diols (PCLs) with pendant functionalities at the polymer chain termini is described. Well‐defined allyl‐functionalized PCLs with varying numbers of allyl end‐block side‐groups were synthesized by cationic ring‐opening polymerization of allyl glycidyl ether using PCL diols as macroinitiators. Further functionalization of the allyl‐functionalized PCLs was realized via the UV‐initiated radical addition of a furan‐functionalized thiol to the pendant allyl functional groups, showing the suitability for post‐modification of the PCL materials. Changes in polymer structure as a result of varying the number of pendant functional units at the PCL chain termini were demonstrated. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 928–939  相似文献   

15.
Telechelic poly(ether ketone)s (PEKs) and polyisobutylenes (PIBs) were combined to form PIB? PEK? PIB triblock copolymers and (PIB? PEK)n multiblock copolymers via the formation of urea linkages. Monovalent and bivalent amino telechelic PIBs were prepared quantitatively from allyl telechelic PIBs by a newly developed reaction sequence featuring nucleophilic reaction steps. Telechelic PEK? NCO polymers were prepared from the corresponding amino telechelic PEKs via a reaction with diphosgene. The highly reactive PEK? NCO and PIB? NH2 telechelics formed PEK? PIB block copolymers only quantitatively when appropriately reactive primary amino groups were present on the amino telechelic PIBs. The obtained block copolymers were microphase‐separated and featured mostly lamellar structures, as determined by small‐angle X‐ray scattering (SAXS). Temperature‐dependent SAXS measurements revealed ordered polymers in the melt up to 210 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 188–202, 2005  相似文献   

16.
We prepared two block copolymers 1 and 2 consisting of a third‐generation dendron with poly(ethylene oxide) (PEO) peripheries and a linear polystyrene (PS) coil. The PS molecular weights were 2000 g/mol and 8000 g/mol for 1 and 2 , respectively. The differential scanning calorimetry (DSC) data indicated that neither of the block copolymers showed glass transition, implying that there was no microphase separation between the PEO and PS blocks. However, upon doping the block copolymers with lithium triflate (lithium concentration per ethylene oxide unit = 0.2), two distinct glass transitions were seen, corresponding to the salt‐doped PEO and PS blocks, respectively. The morphological analysis using small angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM) demonstrated that a hexagonal columnar morphology was induced in salt‐doped sample 1‐Li+ , whereas the other sample ( 2‐Li+ ) with a longer PS coil revealed a lamellar structure. In particular, in the SAXS data of 2‐Li+ , an abrupt reduction in the lamellar thickness was observed near the PS glass transition temperature (Tg), in contrast to the SAXS data for 1‐Li+ . This reduction implies that there is a lateral expansion of the molecular section in the lamellar structure, which can be interpreted by the conformational energy stabilization of the long PS coil above Tg. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2372–2376, 2010  相似文献   

17.
The synthesis of amphiphilic triblock copolymers, poly(di[methylamine]ethyl methacrylate)‐b‐poly(cyclohexyl methacrylate)‐b‐poly(di[methylamine]ethyl methacrylate) PDMAE‐b‐PCH‐b‐PDMAE, has been performed by atom transfer radical polymerisation. Those have been obtained in a well‐controlled manner in terms of molecular weight and polydispersity index. The triblock copolymer characterisation has been made in condensed state and in solution. The existence of microphase separation has been confirmed by differential scanning calorimetry. However, the domains of both inner and outer blocks seem not to be ordered for one another from small‐angle X‐ray scattering (SAXS) measurements using synchrotron radiation. The micelle formation in dilute methanol solutions has been confirmed for all triblock copolymers by dynamic light scattering analyses. The size of these micelles has been demonstrated to be dependent on the molecular weight. Similar observations have been made in concentrate methanol solutions by using SAXS experiments, pointed also out that an increment of the intermicelle interactions is produced as the concentration increases. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 85–92, 2008  相似文献   

18.
Blends of poly(2‐vinyl pyridine)‐block‐poly(methyl methacrylate) (P2VP‐b‐PMMA) and poly(hydroxyether of bisphenol A) (phenoxy) were prepared by solvent casting from chloroform solution. The specific interactions, phase behavior and nanostructure morphologies of these blends were investigated by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), dynamic light scattering (DLS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). In this block copolymer/homopolymer blend system, it is established that competitive hydrogen bonding exists as both blocks of the P2VP‐b‐PMMA are capable of forming intermolecular hydrogen bonds with phenoxy. It was observed that the interaction between phenoxy and P2VP is stronger than that between phenoxy and PMMA. This imbalance in the intermolecular interactions and the repulsions between the two blocks of the diblock copolymer lead to a variety of phase morphologies. At low phenoxy concentration, spherical micelles are observed. As the concentration increases, PMMA begins to interact with phenoxy, leading to the changes of morphology from spherical to wormlike micelles and finally forms a homogenous system. A model is proposed to describe the self‐assembled nanostructures of the P2VP‐b‐PMMA/phenoxy blends, and the competitive hydrogen bonding is responsible for the morphological changes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1894–1905, 2009  相似文献   

19.
Poly(N,N‐dimethylacrylamide‐co‐allyl methacrylate) (DMA‐co‐AMA) copolymers were prepared by the copolymerization of N,N‐dimethylacrylamide with allyl methacrylate (AMA). The methacryloyl group of AMA reacted preferentially, and this resulted in pendant allyl groups along the copolymer chains. Aqueous solutions of these DMA‐co‐AMA copolymers were thermoresponsive and showed liquid–liquid phase transitions at temperatures that depended on the AMA content. Hydrogel microspheres were prepared from these thermally phase‐separated liquid microdroplets by the free‐radical crosslinking of the pendant allyl groups. The morphologies of the resulting thermoresponsive microspheres as a function of the reaction temperature and the amount of the initiator were examined. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1641–1648, 2005  相似文献   

20.
Graft copolymers consisting of amorphous main chain, poly(methyl methacrylate) (PMMA), or poly(methyl acrylate) (PMAc), and crystalline side chains, poly(ethylene glycol) (PEG), have been prepared by copolymerization of PEG macromonomers with methyl methacrylate or methyl acrylate (MMAx or MACx, respectively). Because of the compatibility of PMMA/PEG and PMAc/PEG, from small‐angle X‐ray scattering results, the main and side chains in graft copolymers were suggested to be homogeneous in the molten state. Differential scanning calorimetry (DSC) cooling scans revealed that PEG side chains for graft copolymers with large PEG fractions were crystallized when the sample was cooled, with a cooling rate of 10 °C/min. The spherulite pattern observed by a polarized optical microscope suggested the growth of PEG crystalline lamellae. Crystallization of PEG in MMAx was more restrained than in MACx. From these results, we have concluded that the crystallization behavior of the grafted side chains is strongly influenced by the glass transition of a homogeneously molten sample as well as dilution of the crystallizable chains. Domain spacings for isothermally crystallized graft copolymers were described by interdigitating chain packing in crystalline–amorphous lamellar structure. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 79–86, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号