共查询到20条相似文献,搜索用时 15 毫秒
1.
Hui‐Min Wang Sheng‐Huei Hsiao 《Journal of polymer science. Part A, Polymer chemistry》2014,52(2):272-286
New series aromatic polyamides with (carbazol‐9‐yl)triphenylamine units were synthesized from a newly synthesized diamine monomer, 4,4′‐diamino‐4″‐(3,6‐dimethoxycarbazol‐9‐yl) triphenylamine, and aromatic dicarboxylic acids via the phosphorylation polyamidation technique. These polyamides exhibit good solubility in many organic solvents and can be solution‐cast into flexible and strong films with high thermal stability. They show well‐defined and reversible redox couples during oxidative scanning, with a strong color change from colorless neutral form to yellowish green and blue oxidized forms at applied potentials scanning from 0.0 to 1.3 V. They show enhanced redox‐stability and electrochromic performance as compared to the corresponding analogs without methoxy substituents on the active sites of the carbazole unit. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 272–286 相似文献
2.
Sheng‐Huei Hsiao Guey‐Sheng Liou Yi‐Chun Kung Yu‐Ming Chang 《Journal of polymer science. Part A, Polymer chemistry》2010,48(13):2798-2809
A new triphenylamine‐based aromatic dicarboxylic acid monomer, 4‐tert‐butyl‐4′,4″‐dicarboxytriphenylamine ( 2 ), was synthesized from the cesium fluoride mediated N,N‐diarylation reaction of 4‐tert‐butylaniline with 4‐fluorobenzonitrile and subsequent alkaline hydrolysis of the dinitrile intermediate. A series of six aromatic polyamides 4a‐4f with tert‐butyltriphenylamine groups was prepared from the newly synthesized dicarboxylic acid and various aromatic diamines. These polyamides were readily soluble in many organic solvents and could be solution‐cast into flexible and strong films. The glass‐transition temperatures of these polymers were in the range of 274–311 °C. These polymers exhibited strong UV‐vis absorption bands at 356–366 nm in NMP solution. Their photoluminescence spectra showed maximum bands around 433–466 nm in the blue region. Cyclic voltammograms of all the polyamides exhibited reversible oxidation redox couples in acetonitrile. The polyamide 4f, with tert‐butyltriphenylamine segment in both diacid and diamine residues, exhibited stable electrochromic characteristics with a color change from a colorless neutral form, through a green semioxidized form, to a deep purple fully oxidized form. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2798–2809, 2010 相似文献
3.
Sheng‐Huei Hsiao Guey‐Sheng Liou Hui‐Min Wang 《Journal of polymer science. Part A, Polymer chemistry》2009,47(9):2330-2343
A new triphenylamine‐containing aromatic diamine monomer, N,N‐bis(4‐aminophenyl)‐N′,N′‐bis(4‐tert‐butylphenyl)‐1,4‐phenylenediamine, was synthesized by an established synthetic procedure from readily available reagents. A novel family of electroactive polyamides with di‐tert‐butyl‐substituted N,N,N′,N′‐tetraphenyl‐1,4‐phenylenediamine units were prepared via the phosphorylation polyamidation reactions of the newly synthesized diamine monomer with various aromatic or aliphatic dicarboxylic acids. All the polymers were amorphous with good solubility in many organic solvents, such as N‐methyl‐2‐pyrrolidinone (NMP) and N,N‐dimethylacetamide, and could be solution‐cast into tough and flexible polymer films. The polyamides derived from aromatic dicarboxylic acids had useful levels of thermal stability, with glass‐transition temperatures of 269–296 °C, 10% weight‐loss temperatures in excess of 544 °C, and char yields at 800 °C in nitrogen higher than 62%. The dilute solutions of these polyamides in NMP exhibited strong absorption bands centered at 316–342 nm and photoluminescence maxima around 362–465 nm in the violet‐blue region. The polyamides derived from aliphatic dicarboxylic acids were optically transparent in the visible region and fluoresced with a higher quantum yield compared with those derived from aromatic dicarboxylic acids. The hole‐transporting and electrochromic properties were examined by electrochemical and spectro‐electrochemical methods. Cyclic voltammograms of the polyamide films cast onto an indium‐tin oxide‐coated glass substrate exhibited two reversible oxidation redox couples at 0.57–0.60 V and 0.95–0.98 V versus Ag/AgCl in acetonitrile solution. The polyamide films revealed excellent elcterochemical and electrochromic stability, with a color change from a colorless or pale yellowish neutral form to green and blue oxidized forms at applied potentials ranging from 0.0 to 1.2 V. These anodically coloring polymeric materials showed interesting electrochromic properties, such as high coloration efficiency (CE = 216 cm2/C for the green coloring) and high contrast ratio of optical transmittance change (ΔT%) up to 64% at 424 nm and 59% at 983 nm for the green coloration, and 90% at 778 nm for the blue coloration. The electroactivity of the polymer remains intact even after cycling 500 times between its neutral and fully oxidized states. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2330–2343, 2009 相似文献
4.
Sheng‐Huei Hsiao Guey‐Sheng Liou Yi‐Chun Kung Tzu‐Jung Hsiung 《Journal of polymer science. Part A, Polymer chemistry》2010,48(15):3392-3401
A new triphenylamine‐based diamine monomer, 4,4′‐diamino‐2″,4″‐dimethoxytriphenylamine ( 2 ), was synthesized from readily available reagents and was reacted with various aromatic dicarboxylic acids to produce a series of aromatic polyamides ( 4a–h ) containing the redox‐active 2,4‐dimethoxy‐substituted triphenylamine (dimethoxyTPA) unit. All the resulting polyamides were readily soluble in polar organic solvents and could be solution cast into tough and flexible films. These polymers exhibited good thermal stability with glass transition temperatures of 243–289 °C and softening temperatures of 238–280 °C, 10% weight loss temperatures in excess of 470 °C in nitrogen, and char yields higher than 60% at 800 °C in nitrogen. The redox behaviors of the polymers were examined using cyclic voltammetry (CV). All these polyamides showed two reversible oxidation processes in the first CV scan. The polymers also displayed low ionization potentials as a result of their dimethoxyTPA moieties. In addition, the polymers displayed excellent stability of electrochromic characteristics with coloration change from a colorless neutral state to green and blue‐purple oxidized states. These anodically coloring polyamides showed high green coloration efficiency (CE = 329 cm2/C), high contrast of optical transmittance change (ΔT% = 84% at 829 nm), and long‐term redox reversibility. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3392–3401, 2010 相似文献
5.
New electroactive and electrochromic aromatic polyamides with ether‐linked bis(triphenylamine) units 下载免费PDF全文
Sheng‐Huei Hsiao Shou‐Lun Cheng 《Journal of polymer science. Part A, Polymer chemistry》2015,53(3):496-510
A new class of electroactive polyamides with ether‐linked bis(triphenylamine) [O(TPA)2] units were prepared through the direct phosphorylation polycondensation from N,N‐di(4‐aminophenyl)‐N′,N′‐diphenyl‐4,4′‐oxydianiline and aromatic dicarboxylic acids. These polyamides were amorphous with good solubility in many organic solvents, such as NMP and DMAc, and could be solution‐cast into strong and flexible polymer films. Their decomposition temperatures (Td) at a 10% weight‐loss in nitrogen and air were recorded at 556–568 °C and 537–555 °C, respectively. The glass‐transition temperatures (Tg) of all the polyamides were observed in the range of 218?253 °C by DSC. Cyclic voltammograms of the polyamide films cast onto an indium‐tin oxide (ITO)‐coated glass substrate exhibited two reversible oxidation redox couples at 0.80–0.82 V and 0.96–0.98 V versus Ag/AgCl in an electrolyte containing acetonitrile solution. The polyamide films showed excellent electrochemical and electrochromic stability, with a color change from a colorless or pale yellowish neutral form to green and purple oxidized forms at applied potentials ranging from 0 to 1.2 V. These polymers can also be used to fabricate electrochromic devices, and they showed high coloration efficiency, high redox stability, and fast response time. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 496–510 相似文献
6.
Guey‐Sheng Liou Sheng‐Huei Hsiao Mina Ishida Masaaki Kakimoto Yoshio Imai 《Journal of polymer science. Part A, Polymer chemistry》2002,40(16):2810-2818
A new triphenylamine‐containing aromatic diamine, N, N′‐bis(4‐aminophenyl)‐N, N′‐diphenyl‐1,4‐phenylenediamine, was prepared by the condensation of N,N′‐diphenyl‐1,4‐phenylenediamine with 4‐fluoronitrobenzene, followed by catalytic reduction. A series of novel aromatic polyamides with triphenylamine units were prepared from the diamine and various aromatic dicarboxylic acids or their diacid chlorides via the direct phosphorylation polycondensation or low‐temperature solution polycondensation. All the polyamides were amorphous and readily soluble in many organic solvents such as N, N‐dimethylacetamide and N‐methyl‐2‐pyrrolidone. These polymers could be solution cast into transparent, tough, and flexible films with good mechanical properties. They had useful levels of thermal stability associated with relatively high glass‐transition temperatures (257–287 °C), 10% weight‐loss temperatures in excess of 550 °C, and char yields at 800 °C in nitrogen higher than 72%. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2810–2818, 2002 相似文献
7.
Han‐Yu Wu Kun‐Li Wang Der‐Jang Liaw Kueir‐Rarn Lee Juin‐Yih Lai 《Journal of polymer science. Part A, Polymer chemistry》2010,48(7):1469-1476
A novel dibromo compound containing unsymmetrical substituted bi‐triarylamine was synthesized. A conjugated polymer was prepared via the Suzuki coupling from the newly prepared dibromo compound and 9,9‐dioctylfluorene‐2,7‐bis(trimethyleneboronate). The glass transition temperature (Tg) of the conjugated polymer was 140 °C, 10% weight‐loss temperatures (Td10) in nitrogen was 458 °C, and char yield at 800 °C in nitrogen higher than 64%. Cyclic voltammogram of the polymer film cast onto an indium‐tin oxide (ITO)‐coated glass substrate exhibited two reversible oxidation redox couples at 0.70 and 1.10 V versus Ag/Ag+ in acetonitrile solution. The polymer films revealed excellent stability of electrochromic characteristics, with a color change from yellow green of the neutral form to the dark green and blue of oxidized forms at applied potentials ranging from 0 to 1.3 V. The color switching time and bleaching time were 4.25 and 7.22 s for 860 nm and 5.51 s and 6.48 s for 560 nm. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1469–1476, 2010 相似文献
8.
Hui‐Min Wang Sheng‐Huei Hsiao Guey‐Sheng Liou Chieh‐Hsiang Sun 《Journal of polymer science. Part A, Polymer chemistry》2010,48(21):4775-4789
A new carbazole‐derived, triphenylamine (TPA)‐containing aromatic dicarboxylic acid monomer, 4,4′‐dicarboxy‐4″‐(3,6‐di‐tert‐butylcarbazol‐9‐yl)TPA, was synthesized, and it led to a series of electroactive aromatic polyamides with main‐chain TPA and pendent 3,6‐bis(tert‐butyl)carbazole units by reacting it with various aromatic diamines via the phosphorylation polyamidation technique. The polyamides were amorphous with good solubility in many organic solvents and could be solution‐cast into flexible and strong films. They showed high glass‐transition temperatures (282–335 °C) and high thermal stability (10% weight loss temperatures >480 °C). The electroactive polymer films had well‐defined and reversible redox couples with good cycle stability in acetonitrile solutions. The polymer films also exhibited fluorescent and multielectrochromic behaviors. The anodically electrochromic polyamide films had moderate coloration efficiency (~100 cm2/C) and high optical contrast ratio of transmittance change (Δ%T) up to 47% at 813 nm and 48% at 414 nm for the green coloring. After hundreds of cyclic switches, the polymer films still retained good redox and electrochromic activity. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010 相似文献
9.
Yi‐Chun Kung Sheng‐Huei Hsiao 《Journal of polymer science. Part A, Polymer chemistry》2011,49(16):3475-3490
A series of novel aromatic polyamides with pyrenylamine in the backbone were prepared from a newly synthesized dicarboxylic acid monomer, N,N‐di(4‐carboxyphenyl)‐1‐aminopyrene, and various aromatic diamines via the phosphorylation polyamidation technique. These polyamides were readily soluble in many organic solvents and could be solution‐cast into tough and amorphous films. They had useful levels of thermal stability with glass‐transition temperatures in the range of 276–342 °C and 10% weight loss temperatures in excess of 500 °C. The dilute N‐methyl‐2‐pyrrolidone (NMP) solutions of these polymers exhibited fluorescence maxima around 455–540 nm with quantum yields up to 56.9%. The polyamides also showed remarkable solvatochromism of the emission spectra. Their films showed reversible electrochemical oxidation and reduction accompanied by strong color changes from colorless neutral state to purple oxidized state and to yellow reduced state. The polyamide 4g containing the pyrenylamine units in both diacid and diamine sides exhibited easily accessible p‐ and n‐doped states, together with multicolored electrochromic behaviors. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
10.
Hui‐Min Wang Sheng‐Huei Hsiao 《Journal of polymer science. Part A, Polymer chemistry》2014,52(8):1172-1184
Three series of aromatic polyimides with 4‐(carbazol‐9‐yl)triphenylamine moieties were prepared from the polycondensation reactions of 4,4′‐diamino‐4″‐(carbazol‐9‐yl) triphenylamine (1), 4,4′‐diamino‐4″‐(3,6‐di‐tert‐butylcarbazol‐9‐yl)triphenylamine (t‐Bu‐1), and 4,4′‐diamino‐4″‐(3,6‐dimethoxycarbazol‐9‐yl)triphenylamine (MeO‐1), respectively, with various commercially available tetracarboxylic dianhydrides. In addition to high thermal stability and good film‐forming ability, the resulting polyimides exhibited an ambipolar electrochromic behavior. The polyimides based on t‐Bu‐1 and MeO‐1 revealed higher redox‐stability and enhanced electrochromic performance than the corresponding ones based on 1 because the active sites of their carbazole units are blocked with bulky t‐butyl or electron‐donating methoxy groups. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1172–1184 相似文献
11.
Sheng‐Huei Hsiao Hui‐Min Wang Pei‐Chi Chang Yu‐Ruei Kung Tzong‐Ming Lee 《Journal of polymer science. Part A, Polymer chemistry》2013,51(13):2925-2938
A series of electroactive polyetherimides (PEIs) with triphenylamine (TPA) units were prepared from the polycondensation reactions of 4,4′‐bis(p‐aminophenoxy)triphenylamine with aromatic tetracarboxylic dianhydrides via a conventional two‐step technique. The PEIs showed high thermal stability, with glass‐transition temperatures of 234–282 °C and decomposition temperatures in excess of 500 °C. They showed well‐defined and reversible redox couples during both p‐ and n‐doping processes, together with multielectrochromic behaviors. These polymers exhibited enhanced redox‐stability and electrochromic performance as compared with the corresponding analogs without the phenoxy spacer between the TPA and imide units. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2925–2938 相似文献
12.
Guey‐Sheng Liou Sheng‐Huei Hsiao 《Journal of polymer science. Part A, Polymer chemistry》2003,41(1):94-105
A new triphenylamine‐containing aromatic dicarboxylic acid, N,N′‐bis(4‐carboxyphenyl)‐N,N′‐diphenyl‐1,4‐phenylenediamine, was synthesized by the condensation of N,N′‐diphenyl‐1,4‐phenylenediamine with 4‐fluorobenzonitrile, followed by the alkaline hydrolysis of the intermediate dinitrile compound. A series of novel triphenylamine‐based aromatic poly(amine amide)s with inherent viscosities of 0.50–1.02 dL/g were prepared from the diacid and various aromatic diamines by direct phosphorylation polycondensation. All the poly(amine amide)s were amorphous in nature, as evidenced by X‐ray diffractograms. Most of the poly(amine amide)s were quite soluble in a variety of organic solvents and could be solution‐cast into transparent, tough, and flexible films with good mechanical properties. They had useful levels of thermal stability associated with glass‐transition temperatures up to 280 °C, 10% weight‐loss temperatures in excess of 575 °C, and char yields at 800 °C in nitrogen higher than 60%. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 94–105, 2003 相似文献
13.
Sheng‐Huei Hsiao Ying‐Hsiu Hsiao Yu‐Ruei Kung 《Journal of polymer science. Part A, Polymer chemistry》2016,54(9):1289-1298
A novel morpholinyl‐substituted, triphenylamine‐based diamine monomer, namely 4,4′‐diamino‐4″‐(4‐morpholinyl)triphenylamine, was synthesized and polymerized with various aromatic dicarboxylic acids via the phosphorylation polyamidation reaction leading to a series of electroactive aromatic polyamides (aramids). All aramids were readily soluble in polar organic solvents and could be solution cast into tough and flexible films with high thermal stability. Cyclic voltammograms of the aramid films on the indium‐tin oxide‐coated glass substrate exhibited a pair of reversible oxidation waves with very low onset potentials of 0.36 − 0.41 V (vs. Ag/AgCl) in acetonitrile solution. The polymer films showed reversible electrochemical oxidation accompanied by strong color changes with high coloration efficiency, high contrast ratio, and rapid switching time. The optical transmittance change (Δ%T) at 650 nm between the neutral state and the fully oxidized state is up to 90%. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1289–1298 相似文献
14.
Sheng‐Huei Hsiao Yu‐Min Chang Hwei‐Wen Chen Guey‐Sheng Liou 《Journal of polymer science. Part A, Polymer chemistry》2006,44(15):4579-4592
A new triphenylamine‐containing diamine monomer, 4,4′‐diamino‐4″‐tert‐butyltriphenylamine, was successfully synthesized by the cesium fluoride‐mediated N,N‐diarylation of 4‐tert‐butylaniline with 4‐fluoronitrobenzene, followed by the reduction of the nitro group. The obtained diamine monomer was reacted with various aromatic dicarboxylic acids and tetracarboxylic dianhydrides to produce two series of novel triphenylamine‐based polyamides and polyimides with pendent tert‐butyl substituents. Most of the polymers were readily soluble in polar organic solvents, such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide (DMAc), and could be solution cast into tough and flexible polymer films. These polymers showed high glass transition temperatures between 282 and 320 °C, and they were fairly stable up to a temperature above 450 °C (for polyamides) or 500 °C (for polyimides). These polymers exhibited UV absorption maxima around 308 to 361 nm. The photoluminescence spectra of the polyamides in DMAc exhibited a peak emission wavelength in the blue at 421–433 nm. Cyclic voltammograms of polyamides and polyimides showed an oxidation wave at 1.0–1.1 V versus Ag/AgCl in an acetonitrile solution. All the polyamides and polyimides exhibited excellent reversibility of electrochromic characteristics by continuous several cyclic scans between 0.0 and 1.1–1.3 V, with a color change from the original pale yellowish neutral form to the green or blue oxidized forms. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4579–4592, 2006 相似文献
15.
16.
Guey‐Sheng Liou Sheng‐Huei Hsiao 《Journal of polymer science. Part A, Polymer chemistry》2002,40(15):2564-2574
A new N‐phenylated amide (N‐phenylamide) unit containing aromatic diamine, N,N′‐bis(3‐aminobenzoyl)‐N,N′‐diphenyl‐1,4‐phenylenediamine, was prepared by the condensation of N,N′‐diphenyl‐1,4‐phenylenediamine with 3‐nitrobenzoyl chloride, followed by catalytic reduction. Two series of organosoluble aromatic poly(N‐phenylamide‐imide)s and poly(N‐phenylamide‐amide)s with inherent viscosities of 0.58–0.82 and 0.56–1.21 dL/g were prepared by a conventional two‐stage method and the direct phosphorylation polycondensation, respectively, from the diamine with various aromatic dianhydrides and aromatic dicarboxylic acids. All polyimides and polyamides are amorphous and readily soluble in many organic solvents such as N,N‐dimethylacetamide and N‐methyl‐2‐pyrrolidone. These polymers could be solution cast into transparent, tough, and flexible films with high tensile strengths. These polyimides and polyamides had glass‐transition temperatures in the ranges of 230–258 and 196–229 °C, respectively. Decomposition temperatures of the polyimides for 10% weight loss all occurred above 500 °C in both nitrogen and air atmospheres. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2564–2574, 2002 相似文献
17.
Sheng‐Huei Hsiao Jhong‐Syuan Han 《Journal of polymer science. Part A, Polymer chemistry》2017,55(8):1409-1421
A new 2,7‐bis(diphenylamino)naphthalene‐based diamine monomer, N,N′‐bis(4‐aminophenyl)‐N,N′‐bis(4‐methoxyphenyl)‐2,7‐naphthalenediamine, was synthesized and polymerized with various aromatic dicarboxylic acids via the phosphorylation polyamidation reaction leading to a new series of redox‐active and electrochromic aromatic polyamides. The polyamides exhibited high solubility in many polar aprotic solvents, good film‐forming ability, and high thermal stability. They also showed stable electrochemical stability and anodically green coloring when oxidized. The two arylamino centers showed a weak electronic interaction via the 2,7‐naphthalenediyl bridge, and thus they started to oxidize almost at the same time. No intervalence charge transfer (IVCT) absorption was observed during the oxidation processes of these polyamides. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1409–1421 相似文献
18.
Ningwei Sun Ziwei Zhou Danming Chao Xiaojing Chu Yinlong Du Xiaogang Zhao Daming Wang Chunhai Chen 《Journal of polymer science. Part A, Polymer chemistry》2017,55(2):213-222
A series of electrochromic and photoluminescence‐active polyamides 4a‐4e were prepared from a novel dicarboxylic acid, N,N‐di(4‐carboxyphenyl)‐2‐amino‐9,9‐dimethylfluorene, and five diamines via a condensation polymerization. These polyamides were amorphous and readily soluble in many solvents. The glass transition temperatures were in the range of 281–339 °C and the 10% weight loss temperatures in nitrogen were in excess of 490 °C. The polyamides exhibited strong fluorescence in either solution or solid states. The polyamides 4a‐4d showed reversible electrochemical redox with color changing from colorless to grey‐green. Specially, the polyamide 4e with 2‐diphenylamino‐(9,9‐dimethylamine) group in both diamine and dicarboxylic acid residues exhibited multicolored electrochromic behaviors. Furthermore, the fluorescence of these polyamides could be reversibly electroswitched with a high contrast up to 221.4, enabling their potential applications in dual‐switching electrochromic/electrofluorescent materials. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 213–222 相似文献
19.
Guey‐Sheng Liou Kai‐Han Lin 《Journal of polymer science. Part A, Polymer chemistry》2009,47(8):1988-2001
A new triphenylamine‐based polyamide I was prepared by direct polycondensation of AB‐type monomer, 4‐amino‐4′‐carboxy‐4″‐methoxytriphenylamine ( 4 ), in the presence of triphenyl phosphite and pyridine as condensation agents. The obtained polyamide I showed excellent solubility in aprotic polar solvents such as NMP, DMAc, DMF, and DMSO and could be cast into transparent film with weight‐average molecular weight (Mw = 63,400) and polydispersity index (PDI = 1.79). The polyamide I exhibited good thermal stability with relatively high glass‐transition temperature (282 °C), 10% weight‐loss temperature above 470 °C under a nitrogen atmosphere, and char yield at 800 °C in nitrogen higher than 64%. It also showed maximum ultraviolet‐visible absorption at 362 nm and exhibited fluorescence emission maxima at 493 nm in NMP solution with fluorescence quantum yield 4.4%. Cyclic voltammogram of polyamide I film cast onto an indium tin oxide coated glass substrate exhibited one oxidative redox couple at 0.72 V (oxidation onset potential) versus Ag/AgCl in acetonitrile solution and revealed good stability of the electrochromic characteristic with a color change from colorless to green at applied potentials ranging from 0.00 to 1.10 V. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1988–2001, 2009 相似文献
20.
Guey‐Sheng Liou Hwei‐Wen Chen Hung‐Ju Yen 《Journal of polymer science. Part A, Polymer chemistry》2006,44(13):4108-4121
A series of novel poly(amine amide)s ( IIa – IIl ) with pendent N‐carbazolylphenyl units having inherent viscosities of 0.25–1.06 dL/g were prepared via direct phosphorylation polycondensation from various dicarboxylic acids and a carbazole‐based aromatic diamine. Except for poly(amine amide) IIc , derived from trans‐1,4‐cyclohexanedicarboxylic acid, all the other amorphous poly(amine amide)s were readily soluble in many polar solvents, such as N,N‐dimethylacetamide and N‐methyl‐2‐pyrrolidone (NMP), and could be cast into transparent and flexible films. The aromatic poly (amine amide)s had useful levels of thermal stability associated with relatively high glass‐transition temperatures (268–331 °C), 10% weight loss temperatures in excess of 540 °C, and char yields at 800 °C in nitrogen higher than 60%. These polymers exhibited maximum ultraviolet–visible absorption at 293–361 nm in NMP solutions. Their photoluminescence in NMP solutions exhibited fluorescence emission maxima around 362 and 448–499 nm for aromatic–aliphatic poly(amine amide)s IIa – IIc and aromatic poly (amine amide)s IId – IIl , respectively. The fluorescence quantum yield in NMP solutions ranged from 0.34% for IIj to 4.44% for IIa . The hole‐transporting and electrochromic properties were examined with electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the poly(amine amide) films cast onto an indium tin oxide coated glass substrate exhibited reversible oxidation at 0.81 V and irreversible oxidation redox couples at 1.20 V versus Ag/AgCl in acetonitrile solutions, and they revealed excellent stability of the electrochromic characteristics, with a color change from yellow to green at applied potentials ranging from 0.00 to 1.05 V. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4108–4121, 2006 相似文献