首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this article, we introduce and analyze a weak Galerkin finite element method for numerically solving the coupling of fluid flow with porous media flow. Flows are governed by the Stokes equations in primal velocity‐pressure formulation and Darcy equation in the second order primary formulation, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers‐Joseph‐Saffman law. By using the weak Galerkin approach, we consider the two‐dimensional problem with the piecewise constant elements for approximations of the velocity, pressure, and hydraulic head. Stability and optimal error estimates are obtained. Finally, we provide several numerical results illustrating the good performance of the proposed scheme and confirming the optimal order of convergence provided by the weak Galerkin approximation. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1352–1373, 2017  相似文献   

2.
We propose to make the numerical analysis of a model coupling the Darcy equations in a porous medium with the Stokes equations in the cracks. The coupling is provided by a pressure continuity on the interface. We describe a discretization by spectral element methods. We derive a priori optimal error estimates and we present some numerical experiments which confirm the results of the analysis.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1628–1651, 2017  相似文献   

3.
We consider a superconvergence analysis for quadratic finite element approximations of the Stokes–Darcy system. The superclose property of an extra half order is proven for uniform triangular meshes. Based on the result of the superclose property, global superconvergence is derived by applying a postprocessing technique. In addition, some numerical examples are presented to demonstrate our theoretical results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, a semi‐discrete scheme and a fully discrete scheme of the Stokes‐Biot model are proposed, and we analyze the semi‐discrete scheme in detail. First of all, we prove the existence and uniqueness of the semi‐discrete scheme, and a‐priori error estimates are derived. Then, we present the same conclusions for the fully discrete scheme. Finally, under both matching and non‐matching meshes some numerical tests are given to validate the analysis of convergence, which well support the theoretical results.  相似文献   

5.
We consider the a posteriori error estimates for finite element approximations of the Stokes–Darcy system. The finite element spaces adopted are the Hood–Taylor element for the velocity and the pressure in fluid region and conforming piecewise quadratic element for the pressure in porous media region. The a posteriori error estimate is based on a suitable evaluation on the residual of the finite element solution. It is proven that the a posteriori error estimate provided in this paper is both reliable and efficient. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents an a posteriori error analysis for the stationary Stokes–Darcy coupled problem approximated by finite element methods on anisotropic meshes in or 3. Korn's inequality for piecewise linear vector fields on anisotropic meshes is established and is applied to non‐conforming finite element method. Then the existence and uniqueness of the approximation solution are deduced for non‐conforming case. With the obtained finite element solutions, the error estimators are constructed and based on the residual of model equations plus the stabilization terms. The lower error bound is proved by means of bubble functions and the corresponding anisotropic inverse inequalities. In order to prove the upper error bound, it is vital that an anisotropic mesh corresponds to the anisotropic function under consideration. To measure this correspondence, a so‐called matching function is defined, and its discussion shows it to be useful tool. With its help, the upper error bound is shown by means of the corresponding anisotropic interpolation estimates and a special Helmholtz decomposition in both media. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
With methods of potential theory, we develop a representation of a solution of the coupled Stokes–Darcy model in a Lipschitz domain for boundary data in H?1/2. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
We present a new a priori stability and convergence analysis for the local discontinuous Galerkin method applied to the instationary Darcy problem formulated on a d‐dimensional polytope with nonhomogeneous Neumann and Dirichlet boundary conditions. In addition to including a spatially and temporally varying permeability tensor into all estimates, the utilized analysis technique produces a convergence order result for the primary and the flux variables. The only stabilization in the proposed scheme is represented by a penalty term in the primary unknown, and our analysis provides some insights into the role played by this particular choice of stabilization. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1374–1394, 2017  相似文献   

9.
This note presents a wavelets‐Galerkin scheme for the numerical solution of a Stokes problem by using the scaling function of a symmetric biorthogonal spline wavelets that can be modified to generate the divergence‐free wavelets. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 193–198, 2004  相似文献   

10.
There has been a surge of work on models for coupling surface‐water with groundwater flows which is at its core the Stokes–Darcy problem, as well as methods for uncoupling the problem into subdomain, subphysics solves. The resulting (Stokes–Darcy) fluid velocity is important because the flow transports contaminants. The numerical analysis and algorithm development for the evolutionary transport problem has, however, focused on a quasi‐static Stokes–Darcy model and a single domain (fully coupled) formulation of the transport equation. This report presents a numerical analysis of a partitioned method for contaminant transport for the fully evolutionary system. The algorithm studied is unconditionally stable with one subdomain solve per step. Numerical experiments are given using the proposed algorithm that investigates the effects of the penalty parameters on the convergence of the approximations.  相似文献   

11.
Standard Galerkin approximations, using smooth splines to solutions of the Kuramoto‐Tsuzuki equation are analyzed. The existence, uniqueness, and convergence of the fully discrete Crank‐Nicolson scheme are discussed. Furthermore, a second‐order convergent linearized Galerkin approximation are derived. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 21, 2005  相似文献   

12.
We introduce a new variational formulation for the Brinkman‐Darcy equations formulated in terms of the scaled Brinkman vorticity and the global pressure. The velocities in each subdomain are fully decoupled through the momentum equations, and can be later recovered from the principal unknowns. A new finite element method is also proposed, consisting in equal‐order Nédélec and piecewise continuous elements, for vorticity and pressure, respectively. The error analysis for the scheme is carried out in the natural norms, with bounds independent of the fluid viscosity. An adequate modification of the formulation and analysis permits us to specify the presentation to the case of axisymmetric configurations. We provide a set of numerical examples illustrating the robustness, accuracy, and efficiency of the proposed discretization.  相似文献   

13.
In this article, we introduce and analyze a hybridizable discontinuous Galerkin (HDG) method for numerically solving the coupling of fluid flow with porous media flow. Flows are governed by the Stokes and Darcy equations, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers‐Joseph‐Saffman law. We consider a fully‐mixed formulation in which the main unknowns in the fluid are given by the stress, the vorticity, the velocity, and the trace of the velocity, whereas the velocity, the pressure, and the trace of the pressure are the unknowns in the porous medium. In addition, a suitable enrichment of the finite dimensional subspace for the stress yields optimally convergent approximations for all unknowns, as well as a superconvergent approximation of the trace variables. To do that, similarly as in previous articles dealing with development of the a priori error estimates, we use the projection‐based error analysis to simplify the corresponding study. Finally, we provide several numerical results illustrating the good performance of the proposed scheme and confirming the optimal order of convergence provided by the HDG approximation. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 885–917, 2017  相似文献   

14.
In this article, a decoupling scheme based on two‐grid finite element for the mixed Stokes‐Darcy problem with the Beavers‐Joseph interface condition is proposed and investigated. With a restriction of a physical parameter α, we derive the numerical stability and error estimates for the scheme. Numerical experiments indicate that such two‐grid based decoupling finite element schemes are feasible and efficient. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1066–1082, 2014  相似文献   

15.
We stabilize the nonconforming Crouzeix‐Raviart element for the Darcy‐Stokes problem with terms motivated by a discontinuous Galerkin approach. Convergence of the method is shown, also in the limit of vanishing viscosity. Finally, some numerical examples verifying the theoretical predictions are presented. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 21, 2005.  相似文献   

16.
A second‐order decoupled algorithm for the nonstationary Stokes‐Darcy system, which allows different time steps in two subregions, is proposed and analyzed in this paper. The algorithm, which is a combination of the second‐order backward differentiation formula and second‐order extrapolation method, uncouples the problem into two decoupled problems per time step. We prove the unconditional stability and long‐time stability of the decoupled scheme with different time steps and derive error estimates of this decoupled algorithm using finite element spatial discretization. Numerical experiments are provided to illustrate the accuracy, effectiveness, and stability of the decoupled algorithm and show its advantages of increasing accuracy and efficiency.  相似文献   

17.
In this paper, a modified characteristics finite element method for the time dependent Navier–Stokes/Darcy problem with the Beavers–Joseph–Saffman interface condition is presented. In this method, the Navier–Stokes/Darcy equation is decoupled into two equations, one is the Navier–Stokes equation, the other is the Darcy equation, and the Navier–Stokes equation is solved by the modified characteristics finite element method. The theory analysis shows that this method has a good convergence property. In order to show the effect of our method, some numerical results was presented. The numerical results show that this method is highly efficient. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A new decoupled two-gird algorithm with the Newton iteration is proposed for solving the coupled Navier-Stokes/Darcy model which describes a fluid flow filtrating through porous media. Moreover the err...  相似文献   

19.
In this article, we consider the Darcy–Stokes–Brinkman model that can be sorted into three problems: the Darcy problems, the Stokes–Brinkman interface problems and the coupled Darcy–Stokes problems. We study finite element approximation of the model with Dirichlet boundary conditions and make a unified analysis of the three problems based on nonconforming element. Optimal error estimates for the fluid velocity and pressure are derived. Finally, we present some numerical examples verifying the theoretical predictions. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

20.
In this work we consider the reaction‐diffusion system of FitzHugh‐Nagumo type describing the behavior of the electrical conduction in an anisotropic cardiac muscle. The analysis of the Galerkin semidiscrete space approximation to this system is approached by means of a suitable variational formulation in the framework of abstract degenerate evolution equations. The main results concern convergence analysis and a priori stability estimates for the semidiscrete solution. These abstract results are then applied to the cardiac problem and for the finite element Galerkin approximation we achieve optimal order convergence. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 218–240, 2002; DOI 10.1002/num.1000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号