首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The velocity–vorticity formulation of the 3D Navier–Stokes equations was recently found to give excellent numerical results for flows with strong rotation. In this work, we propose a new regularization of the 3D Navier–Stokes equations, which we call the 3D velocity–vorticity-Voigt (VVV) model, with a Voigt regularization term added to momentum equation in velocity–vorticity form, but with no regularizing term in the vorticity equation. We prove global well-posedness and regularity of this model under periodic boundary conditions. We prove convergence of the model's velocity and vorticity to their counterparts in the 3D Navier–Stokes equations as the Voigt modeling parameter tends to zero. We prove that the curl of the model's velocity converges to the model vorticity (which is solved for directly), as the Voigt modeling parameter tends to zero. Finally, we provide a criterion for finite-time blow-up of the 3D Navier–Stokes equations based on this inviscid regularization.  相似文献   

2.
In this paper, we apply Littlewood–Paley theory and Itô integral to get the global existence of stochastic Navier–Stokes equations with Coriolis force in Fourier–Besov spaces. As a comparison, we also give corresponding results of the deterministic Navier–Stokes equations with Coriolis force.  相似文献   

3.
Based on a previously introduced downscaling data assimilation algorithm, which employs a nudging term to synchronize the coarse mesh spatial scales, we construct a determining map for recovering the full trajectories from their corresponding coarse mesh spatial trajectories, and investigate its properties. This map is then used to develop a downscaling data assimilation scheme for statistical solutions of the two-dimensional Navier–Stokes equations, where the coarse mesh spatial statistics of the system is obtained from discrete spatial measurements. As a corollary, we deduce that statistical solutions for the Navier–Stokes equations are determined by their coarse mesh spatial distributions. Notably, we present our results in the context of the Navier–Stokes equations; however, the tools are general enough to be implemented for other dissipative evolution equations.  相似文献   

4.
In this paper, we establish a constant‐type growth estimate in the Lipschitz norm of solutions to the 2D Navier–Stokes equations with fractional diffusion and a polynomial‐type growth estimate of solutions to the 3D axisymmetric Navier–Stokes equations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper we consider the three-dimensional Navier–Stokes equations in infinite channel. We provide a regularity criterion for solutions of the three-dimensional Navier–Stokes equations in terms of the vertical component of the velocity field.  相似文献   

6.
In this paper, we are concerned with the system of the non‐isentropic compressible Navier–Stokes equations coupled with the Maxwell equations through the Lorentz force in three space dimensions. The global existence of solutions near constant steady states is established, and the time‐decay rates of perturbed solutions are obtained. The proof for existence is due to the classical energy method, and the investigation of large‐time behavior is based on the linearized analysis of the non‐isentropic Navier–Stokes–Poisson equations and the electromagnetic part for the linearized isentropic Navier–Stokes–Maxwell equations. In the meantime, the time‐decay rates obtained by Zhang, Li, and Zhu [J. Differential Equations, 250(2011), 866‐891] for the linearized non‐isentropic Navier–Stokes–Poisson equations are improved. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we study the asymptotic behavior for the incompressible anisotropic Navier–Stokes equations with the non-slip boundary condition in a half space of ${\mathbb{R}^3}$ when the vertical viscosity goes to zero. Firstly, by multi-scale analysis, we formally deduce an asymptotic expansion of the solution to the problem with respect to the vertical viscosity, which shows that the boundary layer appears in the tangential velocity field and satisfies a nonlinear parabolic–elliptic coupled system. Also from the expansion, it is observed that away from the boundary the solution of the anisotropic Navier–Stokes equations formally converges to a solution of a degenerate incompressible Navier–Stokes equation. Secondly, we study the well-posedness of the problems for the boundary layer equations and then rigorously justify the asymptotic expansion by using the energy method. We obtain the convergence results of the vanishing vertical viscosity limit, that is, the solution to the incompressible anisotropic Navier–Stokes equations tends to the solution to degenerate incompressible Navier–Stokes equations away from the boundary, while near the boundary, it tends to the boundary layer profile, in both the energy space and the L space.  相似文献   

8.
The paper of Dong [Dong, J. Classical solutions to one-dimensional stationary quantum Navier–Stokes equations, J. Math Pure Appl. 2011] which proved the existence of classical solutions to one-dimensional steady quantum Navier–Stokes equations, when the nonzero boundary value u 0 satisfies some conditions. In this paper, we obtain a different version of existence theorem without restriction to u 0. As a byproduct, we get the existence result of classical solutions to the stationary quantum Navier–Stokes equations.  相似文献   

9.
In this paper, we consider the one-dimensional (1D) compressible bipolar Navier–Stokes–Poisson equations. We know that when the viscosity coefficient and Debye length are zero in the compressible bipolar Navier–Stokes–Poisson equations, we have the compressible Euler equations. Under the case that the compressible Euler equations have a rarefaction wave with one-side vacuum state, we can construct a sequence of the approximation solution to the one-dimensional bipolar Navier–Stokes–Poisson equations with well-prepared initial data, which converges to the above rarefaction wave with vacuum as the viscosity and the Debye length tend to zero. Moreover, we also obtain the uniform convergence rate. The results are proved by a scaling argument and elaborate energy estimate.  相似文献   

10.
In this paper we show that solutions of two-dimensional stochastic Navier–Stokes equations driven by Brownian motion can be approximated by stochastic Navier–Stokes equations forced by pure jump noise/random kicks.  相似文献   

11.
We study the existence theory for the Cucker–Smale–Navier–Stokes (in short, CS–NS) equations in two dimensions. The CS–NS equations consist of Cucker–Smale flocking particles described by a Vlasov-type equation and incompressible Navier–Stokes equations. The interaction between the particles and fluid is governed by a drag force. In this study, we show the global existence of weak solutions for this system. We also prove the global existence and uniqueness of strong solutions. In contrast with the results of Bae et al. (2014) on the CS–NS equations considered in three dimensions, we do not require any smallness assumption on the initial data.  相似文献   

12.
In this paper, we investigate nonhomogeneous incompressible Navier–Stokes–Landau–Lifshitz system in two-dimensional (2-D). This system consists of Navier–Stokes equations coupled with Landau–Lifshitz–Gilbert equation, an evolutionary equation for the magnetization vector. We establish a blowup criterion for the 2-D incompressible Navier–Stokes–Landau–Lifshitz system with finite positive initial density.  相似文献   

13.
This article is concerned with the asymptotical behavior of solutions for the three-dimensional damped Navier–Stokes equations with additive noise. Due to the shortage of the existence proof of the existence of random absorbing sets in a more regular phase space, we cannot obtain some kind of compactness of the cocycle associated with the three-dimensional damped Navier–Stokes equations with additive noise by the Sobolev compactness embedding theorem. In this paper, we prove the existence of a random attractor for the three-dimensional damped Navier–Stokes equations with additive noise by verifying the pullback flattening property.  相似文献   

14.
We consider a simplified model of compressible Navier–Stokes–Fourier coupled to the radiative transfer equation introduced by Seaïd, Teleaga and al., and we study its low Mach number limit. We prove the convergence toward the incompressible Navier–Stokes system coupled to a system of two stationary transport equations.  相似文献   

15.
In this article, we establish sufficient conditions for the regularity of solutions of Navier–Stokes equations based on one of the nine entries of the gradient tensor. We improve the recent results of C.S. Cao, E.S. Titi [C.S. Cao, E.S. Titi, Global regularity criterion for the 3D Navier–Stokes equations involving one entry of the velocity gradient tensor, Arch. Ration. Mech. Anal. 202 (2011) 919–932] and Y. Zhou, M. Pokorný [Y. Zhou, M. Pokorný, On the regularity of the solutions of the Navier–Stokes equations via one velocity component, Nonlinearity 23 (2010) 1097–1107].  相似文献   

16.
In this paper, the blood flow problem is considered in a blood vessel, and a coupling system of Navier–Stokes equations and linear elastic equations, Navier–Lame equations, in a cylinder with cylindrical elastic shell is given as the governing equations of the problem. We provide two finite element models to simulating the three-dimensional Navier–Stokes equations in the cylinder while the asymptotic expansion method is used to solving the linearly elastic shell equations. Specifically, in order to discrete the Navier–Stokes equations, the dimensional splitting strategy is constructed under the cylinder coordinate system. The spectral method is adopted along the rotation direction while the finite element method is used along the other directions. By using the above strategy, we get a series of two-dimensional-three-components (2D-3C) fluid problems. By introduce the S-coordinate system in E3 and employ the thickness of blood vessel wall as the expanding parameter, the asymptotic expansion method can be established to approximate the solution of the 3D elastic problem. The interface contact conditions can be treated exactly based on the knowledge of tensor analysis. Finally, numerical test shows that our method is reasonable.  相似文献   

17.
This paper is devoted to the investigation of stability behaviors of Leray weak solutions to the three-dimensional Navier–Stokes equations. For a Leray weak solution of the Navier–Stokes equations in a critical Besov space, it is shown that the Leray weak solution is uniformly stable with respect to a small perturbation of initial velocity and external forcing. If the perturbation is not small, the perturbed weak solution converges asymptotically to the original weak solution as the time tends to the infinity. Additionally, an energy equality and weak–strong uniqueness for the three-dimensional Navier–Stokes equations are derived. The findings are mainly based on the estimations of the nonlinear term of the Navier–Stokes equations in a Besov space framework, the use of special test functions and the energy estimate method.  相似文献   

18.
In this paper we study the incompressible limit of the degenerate quantum compressible Navier–Stokes equations in a periodic domain T3 and the whole space R3 with general initial data. In the periodic case, by applying the refined relative entropy method and carrying out the detailed analysis on the oscillations of velocity, we prove rigorously that the gradient part of the weak solutions (velocity) of the degenerate quantum compressible Navier–Stokes equations converge to the strong solution of the incompressible Navier–Stokes equations. Our results improve considerably the ones obtained by Yang, Ju and Yang [25] where only the well-prepared initial data case is considered. While for the whole space case, thanks to the Strichartz's estimates of linear wave equations, we can obtain the convergence of the weak solutions of the degenerate quantum compressible Navier–Stokes equations to the strong solution of the incompressible Navier–Stokes/Euler equations with a linear damping term. Moreover, the convergence rates are also given.  相似文献   

19.
We shall consider the two-dimensional (2D) isentropic Navier–Stokes–Korteweg equations which are used to model compressible fluids with internal capillarity. Formally, the 2D isentropic Navier–Stokes–Korteweg equations converge, as the viscosity and the capillarity vanish, to the corresponding 2D inviscid Euler equations, and we do justify this for the case that the corresponding 2D inviscid Euler equations admit a planar rarefaction wave solution. More precisely, it is proved that there exists a family of smooth solutions for the 2D isentropic compressible Navier–Stokes–Korteweg equations converging to the planar rarefaction wave solution with arbitrary strength for the 2D Euler equations. A uniform convergence rate is obtained in terms of the viscosity coefficient and the capillarity away from the initial time. The key ingredients of our proof are the re-scaling technique and energy estimate, in which we also introduce the hyperbolic wave to recover the physical viscosities and capillarity of the inviscid rarefaction wave profile.  相似文献   

20.
In this paper, we study vanishing viscosity limit of 1-D isentropic compressible Navier–Stokes equations with general viscosity to isentropic Euler equations. Firstly, we improve estimates of the entropy flux, then we obtain that the weak solution of the isentropic Euler equations is the inviscid limit of the isentropic compressible Navier–Stokes equations with general viscosity using the compensated compactness frame recently established by G.-Q. Chen and M. Perepelitsa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号