共查询到20条相似文献,搜索用时 15 毫秒
1.
Ronald E. Mickens 《Numerical Methods for Partial Differential Equations》2007,23(3):672-691
An essential feature of nonstandard finite difference schemes for differential equations is the precise manner in which the discretization of derivatives is made. We demonstrate, for differential equations modeling systems where the solutions satisfy a positivity condition, that procedures can be formulated to calculate the so‐called denominator functions that appear in the discrete derivatives. These procedures are applied to a number of both ordinary and partial model differential equations to illustrate their use. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007 相似文献
2.
Ronald E. Mickens 《Numerical Methods for Partial Differential Equations》1999,15(2):201-214
We construct finite difference schemes for a particular class of one‐space dimension, nonlinear reaction‐diffusion PDEs. The use of nonstandard finite difference methods and the imposition of a positivity condition constrain the schemes to be explicit and allow the determination of functional relations between the space and time step‐sizes. The general procedure is illustrated by applying it to several important model systems of PDEs © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 201–214, 1999 相似文献
3.
Ronald E. Mickens 《Numerical Methods for Partial Differential Equations》2000,16(4):361-364
We extend previous work on nonstandard finite difference schemes for one‐space dimension, nonlinear reaction–diffusion PDEs to the case where linear advection is included. The use of a positivity condition allows the determination of a functional relation between the time and space step‐sizes, and provides schemes that are explicit. The Fisher equation is used to illustrate the method. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 361–364, 2000 相似文献
4.
Ronald E. Mickens P.M. Jordan 《Numerical Methods for Partial Differential Equations》2007,23(1):211-219
Two coupled PDEs, where one has a diffusion term and the other does not, are defined to be space‐dimension systems. We show how to construct nonstandard finite difference schemes for such systems and demonstrate that they are positivity‐preserving. These methods also allow the calculation of an explicit functional relationships between the time and space step‐sizes. The case of water flowing through fractured bedrock is used to illustrate our procedure. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007 相似文献
5.
Z. Chen A. B. Gumel R. E. Mickens 《Numerical Methods for Partial Differential Equations》2003,19(3):363-379
A competitive nonstandard semi‐explicit finite‐difference method is constructed and used to obtain numerical solutions of the diffusion‐free generalized Nagumo equation. Qualitative stability analysis and numerical simulations show that this scheme is more robust in comparison to some standard explicit methods such as forward Euler and the fourth‐order Runge‐Kutta method (RK4). The nonstandard scheme is extended to construct a semi‐explicit and an implicit scheme to solve the full Nagumo reaction‐diffusion equation. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 363–379, 2003. 相似文献
6.
Ron Buckmire Karl McMurtry Ronald E. Mickens 《Numerical Methods for Partial Differential Equations》2009,25(3):598-609
Interest in calculating numerical solutions of a highly nonlinear parabolic partial differential equation with fractional power diffusion and dissipative terms motivated our investigation of a heat equation having a square root nonlinear reaction term. The original equation occurs in the study of plasma behavior in fusion physics. We begin by examining the numerical behavior of the ordinary differential equation obtained by dropping the diffusion term. The results from this simpler case are then used to construct nonstandard finite difference schemes for the partial differential equation. A variety of numerical results are obtained and analyzed, along with a comparison to the numerics of both standard and several nonstandard schemes. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009 相似文献
7.
Ronald E. Mickens 《Numerical Methods for Partial Differential Equations》1998,14(6):815-820
We construct a finite difference scheme for the ordinary differential equation describing the traveling wave solutions to the Burgers equation. This difference equation has the property that its solution can be calculated. Our procedure for determining this solution follows closely the analysis used to obtain the traveling wave solutions to the original ordinary differential equation. The finite difference scheme follows directly from application of the nonstandard rules proposed by Mickens. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 815–820, 1998 相似文献
8.
Hristo V. Kojouharov Benito M. Chen 《Numerical Methods for Partial Differential Equations》1999,15(6):617-624
A new nonstandard Eulerian‐Lagrangian method is constructed for the one‐dimensional, transient convective‐dispersive transport equation with nonlinear reaction terms. An “exact” difference scheme is applied to the convection‐reaction part of the equation to produce a semi‐discrete approximation with zero local truncation errors with respect to time. The spatial derivatives involved in the remaining dispersion term are then approximated using standard numerical methods. This approach leads to significant, qualitative improvements in the behavior of the numerical solution. It suppresses the numerical instabilities that arise from the incorrect modeling of derivatives and nonlinear reaction terms. Numerical experiments demonstrate the scheme's ability to model convection‐dominated, reactive transport problems. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 617–624, 1999 相似文献
9.
In this paper, numerical solution of the Burgers–Huxley (BH) equation is presented based on the nonstandard finite difference (NSFD) scheme. At first, two exact finite difference schemes for BH equation obtained. Moreover an NSFD scheme is presented for this equation. The positivity, boundedness and local truncation error of the scheme are discussed. Finally, the numerical results of the proposed method with those of some available methods compared. 相似文献
10.
Marc E. Songolo Issa Ramadhani 《Journal of Difference Equations and Applications》2017,23(7):1222-1240
We construct two nonstandard finite difference schemes and use them to study a mathematical model of cancer therapy. Several recent studies show various aspects of the immune response against the cancer. Our discrete models emphasize the role of antibodies in any form of therapy by taking into account the development of anticancer therapies (chemotherapy, immunotherapy, radiation therapy). The nonstandard finite difference models are implemented by using Matlab. Numerical simulations show the existence of a separation line between the basins of attraction of cancerous cell-free and the highest equilibrium cancerous cell. 相似文献
11.
Gilberto González‐Parra Abraham J. Arenasm Benito M. Chen‐Charpentier 《Numerical Methods for Partial Differential Equations》2014,30(1):210-221
In this article, we construct a numerical method based on a nonstandard finite difference scheme to solve numerically a nonarbitrage liquidity model with observable parameters for derivatives. This nonlinear model considers that the parameters involved are observable from order book data. The proposed numerical method use a exact difference scheme in the linear convection‐reaction term, and the spatial derivative is approximated using a nonstandard finite difference scheme. It is shown that the proposed numerical scheme preserves the positivity as well as stability and consistence. To illustrate the accuracy of the method, the numerical results are compared with those produced by other methods. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 210‐221, 2014 相似文献
12.
Ronald E. Mickens P. M. Jordan 《Numerical Methods for Partial Differential Equations》2005,21(5):976-985
An improved positivity‐preserving nonstandard finite difference scheme for the linear damped wave equation is presented. Unlike an earlier such scheme developed by the authors, the new scheme involves three time levels and is therefore able to include the effects of the equation's relaxation coefficient. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential, 2005 相似文献
13.
R. Anguelov T. Berge M. Chapwanya J.K. Djoko P. Kama 《Journal of Difference Equations and Applications》2020,26(6):818-854
We provide effective and practical guidelines on the choice of the complex denominator function of the discrete derivative as well as on the choice of the nonlocal approximation of nonlinear terms in the construction of nonstandard finite difference (NSFD) schemes. Firstly, we construct nonstandard one-stage and two-stage theta methods for a general dynamical system defined by a system of autonomous ordinary differential equations. We provide a sharp condition, which captures the dynamics of the continuous model. We discuss at length how this condition is pivotal in the construction of the complex denominator function. We show that the nonstandard theta methods are elementary stable in the sense that they have exactly the same fixed-points as the continuous model and they preserve their stability, irrespective of the value of the step size. For more complex dynamical systems that are dissipative, we identify a class of nonstandard theta methods that replicate this property. We apply the first part by considering a dynamical system that models the Ebola Virus Disease (EVD). The formulation of the model involves both the fast/direct and slow/indirect transmission routes. Using the specific structure of the EVD model, we show that, apart from the guidelines in the first part, the nonlocal approximation of nonlinear terms is guided by the productive-destructive structure of the model, whereas the choice of the denominator function is based on the conservation laws and the sub-equations that are associated with the model. We construct a NSFD scheme that is dynamically consistent with respect to the properties of the continuous model such as: positivity and boundedness of solutions; local and/or global asymptotic stability of disease-free and endemic equilibrium points; dependence of the severity of the infection on self-protection measures. Throughout the paper, we provide numerical simulations that support the theory. 相似文献
14.
Ronald E. Mickens P. M. Jordan 《Numerical Methods for Partial Differential Equations》2004,20(5):639-649
A positivity‐preserving nonstandard finite difference scheme is constructed to solve an initial‐boundary value problem involving heat transfer described by the Maxwell‐Cattaneo thermal conduction law, i.e., a modified form of the classical Fourier flux relation. The resulting heat transport equation is the damped wave equation, a PDE of hyperbolic type. In addition, exact analytical solutions are given, special cases are mentioned, and it is noted that the positivity condition is equivalent to the usual linear stability criteria. Finally, solution profiles are plotted and possible extensions to a delayed diffusion equation and nonlinear reaction‐diffusion systems are discussed. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004. 相似文献
15.
AbstractIn this paper, we focus on three inverse problems for a coupled model from temperature-seepage field in high-dimensional spaces. These inverse problems aim to determine an unknown heat transfer coefficient and a source sink term in seepage continuity equation with specified initial-boundary conditions and additional measurements. Some finite difference schemes of coupled equations are presented and analyzed.Three algorithms for these inverse problems are proposed. Some numerical experiments are provided to assert the accuracy and efficiency of proposed algorithms. 相似文献
16.
污染物在非饱和带中运移过程是多组分多相渗流问题.在考虑气相的存在对水相影响的前提下,基于流固耦合力学理论,建立了污染物在非饱和带内运移的流固耦合数学模型.对该强非线性数学模型采用摄动法及积分变换法进行拟解析求解,得出了解析表达式.对非饱和带内的孔隙压力分布、孔隙水流速以及污染物的浓度在耦合与非耦合气相条件下的分布规律进行解析计算.对该渐近解与Faust模型的计算结果进行了对比分析,结果表明:该模型解与Faust解基本吻合,且气相作用以及介质的变形对溶质的输运过程产生较大的影响,从而验证了解析表达式的正确性和实用性.这为定量化预报预测污染物在非饱和带中迁移转化和实验室确定压力-饱和度-渗透率三者之间的关系提供了可靠的理论依据. 相似文献
17.
A. S. Shvedov 《Mathematical Notes》1996,60(5):562-568
The difference schemes of Richardson [1] and of Crank-Nicolson [2] are schemes providing second-order approximation. Richardson's three-time-level difference scheme is explicit but unstable and the Crank-Nicolson two-time-level difference scheme is stable but implicit. Explicit numerical methods are preferable for parallel computations. In this paper, an explicit three-time-level difference scheme of the second order of accuracy is constructed for parabolic equations by combining Richardson's scheme with that of Crank-Nicolson. Restrictions on the time step required for the stability of the proposed difference scheme are similar to those that are necessary for the stability of the two-time-level explicit difference scheme, but the former are slightly less onerous.Translated fromMatematicheskie Zametki, Vol. 60, No. 5, pp. 751–759, November, 1996.This research was supported by the Russian Foundation for Basic Research under grant No. 95-01-00489 and by the International Science Foundation under grants No. N8Q300 and No. JBR100. 相似文献
18.
Stefan Bilbao 《Numerical Methods for Partial Differential Equations》2004,20(3):463-480
This article is devoted to an analysis of simple families of finite difference schemes for the wave equation. These families are dependent on several free parameters, and methods for obtaining stability bounds as a function of these parameters are discussed in detail. Access to explicit stability bounds such as those derived here may, it is hoped, lead to optimization techniques for so‐called spectral‐like methods, which are difference schemes dependent on many free parameters (and for which maximizing the order of accuracy may not be the defining criterion). Though the focus is on schemes for the wave equation in one dimension, the analysis techniques are extended to two dimensions; implicit schemes such as ADI methods are examined in detail. Numerical results are presented. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 463–480, 2004. 相似文献
19.
Roumen Anguelov Jean M.‐S. Lubuma Froduald Minani 《Mathematical Methods in the Applied Sciences》2010,33(1):41-48
A usual way of approximating Hamilton–Jacobi equations is to couple space finite element discretization with time finite difference discretization. This classical approach leads to a severe restriction on the time step size for the scheme to be monotone. In this paper, we couple the finite element method with the nonstandard finite difference method, which is based on Mickens' rule of nonlocal approximation. The scheme obtained in this way is unconditionally monotone. The convergence of the new method is discussed and numerical results that support the theory are provided. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
20.
Roumen Anguelov Jean M.‐S. Lubuma 《Numerical Methods for Partial Differential Equations》2001,17(5):518-543
We formalize the transfer of essential properties of the solution of a differential equation to the solution of a discrete scheme as qualitative stability with respect to the properties. This permits us to motivate some rules (viz. on the order of the difference equation, on the renormalization of the denominator of the discrete derivative, and on nonlocal approximation of nonlinear terms) used in the design of nonstandard finite difference schemes. Extensions of some models are considered, and numerical examples confirming the efficiency of the nonstandard approach are provided. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 518–543, 2001 相似文献