首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of polyurethane (PU) microencapsulated ammonium polyphosphate (MCAPP) were prepared by in situ polymerization from toluene‐2,4‐diisocyanate (TDI), polyethylene glycol (PEG), and pentaerythtritol (PER). And the structure was characterized by Fourier transform infrared spectroscopy (FTIR) and X‐ray photoelectron spectroscopy (XPS). Then it chose the optimal PEG constituent to design microcapsule from scanning electron microscopy (SEM) and water solubility test. The combustion and thermal degradation behaviors of PU blended APP or MCAPP were investigated by thermogravimetric analysis (TGA), UL‐94 test, and microcombustion calorimetry. The results showed that the PU/MCAPP had better thermal stability and flame retardance, due to the stable char forming by APP and PU shell. Moreover, the water resistance of flame retarded PU composite was greatly improved. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Microencapsulated ammonium polyphosphate (APP) with polyurethane (MCAPP) was prepared by in situ polymerization of pentaerythtritol (PER) and toluene‐2,4‐diisocyanate (TDI) in the presence of added APP. MCAPP was then incorporated into polyurethane (PU) to obtain flame retarded PU/MCAPP. Fourier transform infrared (FT‐IR) and X‐ray photoelectron spectroscopy (XPS) showed that APP was encapsulated by a layer of PU. It found that the optimal reaction time was 8 hr and microencapsulation led to an improvement in water leaching from scanning electron microscopy (SEM) and determination of water resistance. Thermal degradation of flame retarded PU was also investigated by thermogravimetric analysis (TGA). UL‐94 test and SEM were performed before and after water treatment at 75°C for seven days, and the results showed that PU loading of 30% MCAPP can maintain the V‐0 level, due to the shield effect of microencapsulation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Three commercialized flame retardants, 1,2‐bis(diphenylphosphinoyl)ethane (EDPO), 6,6‐(1,2‐phenethyl)bis‐6H‐dibenz[c,e][1,2]oxaphosphorin‐6,6‐dioxide (HTP‐6123), and hexa‐phenoxy‐cyclotriphosphazene (HPCTP), were used to prepare the flame retardant diglycidyl ether of bisphenol A (DGEBA) epoxy resin (EP) under the same experimental conditions. The effects of Tg, thermal stability, and water absorption properties of EP caused by the three flame retardants were investigated and compared, together with their flame retardant efficiency. Results showed that the introduction of the three flame retardants improved the flame retardant performance of EP but led to decreases in Tg and decomposition temperature. EDPO showed higher flame retardant efficiency than the other two flame retardants. EP/EDPO showed higher thermal stability, better flame retardant performance, higher Tg value, and lower water absorption than EP/HTP‐6123 and EP/HPCTP. The study discovered that EDPO and HTP‐6123 primarily act through the gas phase flame retardant mechanism, while HPCTP is primarily driven by the condensed phase mechanism.  相似文献   

4.
Microencapsulated ammonium polyphosphate with an epoxy resin (EP) shell (MCAPP) was prepared by in situ method, and was characterized by transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR), and thermgravimetric analysis (TGA). Compared to ammonium polyphosphate (APP), MCAPP has smaller particle sizes and lower water solubility. The effect of MCAPP on the fire performance of EP was studied by using limiting oxygen index (LOI) and UL‐94 tests. When the same loading levels of APP or MCAPP were added into EP, the LOI and UL‐94 tests show similar results. Tensile, bending, and impact strengths of the EP/APP and EP/MCAPP composites were also evaluated, and the results indicate that MCAPP has much less negative influence on the mechanical properties than APP. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A composite consisting of carbon nanotubes and zinc aluminum‐layered double hydroxide (CNT/ZnAl‐LDH) with good solubility in liquid media was synthesized by a co‐precipitation method. The structural characterization and morphological observation demonstrated that the composite displayed a heterostructure with CNTs embedded in ZnAl‐LDH nanosheets. The influence of CNT/ZnAl‐LDH on the thermal stability and flammability performance of flexible polyurethane (PU) foams was characterized. It was established that CNT/ZnAl‐LDH could improve the thermal stability while reduce the peak heat release rate as well as the total smoke release of PU foams. The formation of a protective char with increased mechanical properties and high graphitization degree was mostly postulated for the improved flame retardancy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Six novel poly(amide‐imide)s PAIs 5a‐f were synthesized through the direct polycondensation reaction of six chiral N,N′‐(bicyclo[2,2,2]oct‐7‐ene‐tetracarboxylic)‐bis‐L‐amino acids 3a‐f with bis(3‐amino phenyl) phenyl phosphine oxide 4 in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP), triphenyl phosphite (TPP), calcium chloride (CaCl2) and pyridine. The polymerization reaction produced a series of flame‐retardant and thermally stable poly(amide‐imide)s 5a‐f with high yield and good inherent viscosity of 0.39–0.83 dLg?1. The resultant polymers were fully characterized by means of FTIR, 1H NMR spectroscopy, elemental analyses, inherent viscosity, specific rotation and solubility tests. Thermal properties and flame retardant behavior of the PAIs 5a‐f were investigated using thermal gravimetric analysis (TGA and DTG) and limited oxygen index (LOI). Data obtained by thermal analysis (TGA and DTG) revealed that these polymers show good thermal stability. Furthermore, high char yields in TGA and good LOI values indicated that resultant polymers exhibited good flame retardant properties. N,N′‐(bicyclo[2,2,2]oct‐7‐ene‐tetracarboxylic)‐bis‐L‐amino acids 3a‐f were prepared in quantitative yields by the condensation reaction of bicyclo[2,2,2]oct‐7‐ene‐2,3,5,6‐tetracarboxylic dianhydride 1 with L‐alanine 2a , L‐valine 2b , L‐leucine 2c , L‐isoleucine 2d , L‐phenyl alanine 2e and L‐2‐aminobutyric acid 2f in acetic acid solution. These polymers can be potentially utilized in flame retardant thermoplastic materials.  相似文献   

7.
Novel halogen‐free compounds [9,10‐dihydro‐9‐oxa‐10‐phosphaphanthrene‐10‐oxide/vinyl methyl dimethoxysilane/N‐β‐(aminoethyl)‐γ‐aminopropyl methyl dimethoxysilane (DOPO–VMDMS–NMDMS)] that simultaneously contain phosphorus, nitrogen, and silicon have been synthesized through the reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphanthrene‐10‐oxide (DOPO), vinyl methyl dimethoxysilane (VMDMS), and N‐β‐(aminoethyl)‐γ‐aminopropyl methyl dimethoxysilane (NMDMS). The chemical structure and properties of DOPO–VMDMS–NMDMS have been investigated with Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, phosphorous nuclear magnetic resonance, and thermogravimetric analysis (TGA). These synthesized flame retardants have been blended with a poly[2,2‐propane‐(bisphenol) carbonate]/acrylonitrile butadiene styrene (PC/ABS) alloy. The flame‐retardant properties of these mixture samples have been estimated with the limiting oxygen index (LOI), and the thermal stability has been characterized with TGA. The LOI value of PC/ABS/DOPO–VMDMS–NMDMS is enhanced up to 27.2 vol % from 21.2 vol %, and the char yield is also improved slightly (from 12 to 17%) with 2.8 wt % phosphorus, 3.0 wt % silicon, and 0.5 wt % nitrogen (at a 30 wt % loading of DOPO–VMDMS–NMDMS). The results show that there is a synergistic effect of the elements phosphorus, silicon, and nitrogen on the flame retardance. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1542–1551, 2007  相似文献   

8.
A char-forming agent (CFA) and silica-gel-microencapsulated ammonium polyphosphate (MCAPP) were selected to form novel intumescent flame retardant system (IFRs), and then the influence of this novel IFRs on the thermal and flame retardant properties of low-density polyethylene (LDPE) were studied. The results of cone calorimetry show that the flame retardant properties of LDPE with 30?wt% novel IFR (CFA/MCAPP?=?1:3) improve remarkably. The heat release rate peak, total heat release (THR) decreases, respectively, from 1479.6 to 273.5?kW?m?2 and from 108.0 to 80.5?MJ?m?2. The LDPE composite with CFA/MCAPP?=?1:3 has the excellent water resistance, and it can still obtain a UL-94?V-0 rating after treated with water at 70?°C for 168?h.  相似文献   

9.
The phase behavior of the as‐prepared polyether polyurethane (PU) elastomers was investigated by dynamic mechanical analysis (DMA), polarized optical microscope (POM), and atomic force microscopy (AFM). This PU copolymers were composed of different compositions of two soft segments, poly(ethylene glycol) (PEG) and hydrolytically modified hydroxyl‐terminated poly(butadiene‐co‐acrylonitrile) (h‐HTBN) oligomers. The microphase separation behavior is confirmed to occur between soft and hard segments as well as soft and soft segments as the h‐HTBN is incorporated into the PU system, depending on soft‐soft and/or soft‐hard microdomain composition, molecular weight (MW) of PEG, and hydrolysis time of HTBN. The driving force for this phase separation is mainly due to the formation of inter‐ and intramolecular hydrogen bonding interaction. The PU‐70, PU‐50 samples with non‐reciprocal composition seem to exhibit larger microphase separation than any other PU ones. The hydrolysis degradation, thermal stability, and mechanical properties of the copolymers were assessed by gravimetry, scanning electron microscope (SEM), thermal gravity analysis (TGA), and tensile test, respectively. The experimental results indicated that the incorporation of h‐HTBN soft segment into PEG as well as low MW of PEG leads to increased thermal and degradable stability based on the intermolecular hydrogen bond interaction. The PU‐70 and PU‐50 copolymers exhibit better mechanical properties such as high flexibility and high ductility because of their larger microphase separation architecture with the hard domains acting as reinforcing fillers and/or physical crosslinking agents dispersed in the soft segment matrix. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A specific, sensitive and stable high‐performance liquid chromatographic–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the quantitative determination of methyl 3‐amino‐6‐methoxythieno [2,3‐b]quinoline‐2‐carboxylate (PU‐48), a novel diuretic thienoquinolin urea transporter inhibitor in rat plasma. In this method, the chromatographic separation of PU‐48 was achieved with a reversed‐phase C18 column (100 × 2.1 mm, 3 μm) at 35°C. The mobile phase consisted of acetonitrile and water with 0.05% formic acid added with a gradient elution at flow rate of 0.3 mL/min. Samples were detected with the triple‐quadrupole tandem mass spectrometer with multiple reaction monitoring mode via electrospray ionization source in positive mode. The retention time were 6.2 min for PU‐48 and 7.2 min for megestrol acetate (internal standard, IS). The monitored ion transitions were mass‐to‐charge ratio (m/z) 289.1 → 229.2 for PU‐48 and m/z 385.3 → 267.1 for the internal standard. The calibration curve for PU‐48 was linear over the concentration range of 0.1–1000 ng/mL (r2 > 0.99), and the lower limit of quantitation was 0.1 ng/mL. The precision, accuracy and stability of the method were validated adequately. The developed and validated method was successfully applied to the pharmacokinetic study of PU‐48 in rats.  相似文献   

11.
The purpose of this research is to study the synthesis and characterization of stable aqueous dispersions of externally chain extended polyurethane/urea compositions terminated by hydrolyzable or hydrolyzed trialkoxysilane groups incorporated through secondary amino groups. These dispersions with excellent storage stability are substantially free from organic solvents which cure to water and solvent resistant, tough, scratch resistant, preferably light stable (non‐yellowing) silylated polyurethane (SPU) films. The films were characterized by FT‐IR, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile strength and water contact angle measurements, nanoindentation, gel content, water and xylene swellability tests. The properties of the films were discussed and correlated in detail by changing length of soft segment, diisocyanates, NCO/OH ratio and chain extender, ethylenediamine (EDA). From the results, it was found that the particle size and viscosity are lower whereas the gel content and thermal stability are higher for SPUs. Modulus, hardness and tensile properties of SPU films are superior compared to EDA‐PU film. Higher water contact angle and residual weight percentage of SPU films confirm silylation of PU by [3‐(phenylamino)propyl]trimethoxysilane (PAPTMS). Increase in NCO/OH ratios consumes more quantity of PAPTMS which makes PU with superior mechanical properties. Higher PAPTMS content in SPU results in effective crosslinking of the functional silanol groups formed by hydrolysis reaction of trimethoxysilane groups. Overall, SPUs synthesized at 1.4 NCO/OH ratio using Poly‐(oxytetramethylene)glycol (PTMG)‐2000 and isophorone diisocyanate (or) toluene‐2,4‐diisocyanate have excellent properties compared to SPUs prepared using PTMG‐1000 and at 1.2 and 1.6 NCO/OH ratios. SPUs prepared at 1.6 NCO/OH ratio are brittle due to higher crosslinking density. In addition, the crosslinking density of the films can be modified through silane end‐group modification to produce SPUs with a wide range of physical properties. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Through addition reaction of Schiff‐base terephthalylidene‐bis‐(p‐aminophenol) ( DP‐1 ) and diethyl phosphite (DEP), a novel phosphorus‐modified epoxy, 4,4'‐diglycidyl‐(terephthalylidene‐bis‐(p‐aminophenol))diphosphonate ether ( EP‐2 ), was obtained. An modification reaction between EP‐2 and DP‐1 resulted in an epoxy compound, EP‐3 , possessing both phosphonate groups and C?N imine groups. The structure of EP‐2 was characterized by Fourier transform infrared (FTIR), elemental analysis (EA), 1H, 13C, and 31P NMR analyses. The thermal properties of phosphorus‐modified epoxies cured with 4,4'‐diaminodiphenylmethane (MDA) and 4,4'‐diaminodiphenyl ether (DDE) were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The activation energies of dynamic thermal degradation (Ed) were calculated using Kissinger and Ozawa's methods. The thermal degradation mechanism was characterized using thermogravimetric analysis/infrared spectrometry (TG‐IR). In addition, the flame retardancy of phosphorus‐modified epoxy thermosets was evaluated using limiting oxygen index (LOI) and UL‐94 vertical test methods. Via an ingenious design, phosphonate groups were successfully introduced into the backbone of the epoxies; the flame retardancy of phosphorus‐modified epoxy thermosets was distinctly improved. Due to incorporation of C?N imine group, the phosphorus‐modified epoxy thermosets exhibited high thermal stabilities; the values of glass‐transition temperatures (Tgs) were about 201–210°C, the values of Ed were about 220–490 kJ/mol and char yields at 700°C were 49–53% in nitrogen and 45–50% in air. These results showed an improvement in the thermal properties of phosphorus‐modified epoxy by the incorporation of C?N imine groups. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
We describe the synthesis, characterization, and select properties of a novel polyurethane (PU) prepared using a new polyisobutylene diol, HO‐CH2CH2‐S‐PIB‐S‐CH2CH2‐OH, soft segment and conventional hard segments. The diol is synthesized by terminal functionalization of ally‐telechelic PIB followed by low‐cost thiol‐ene click chemistry. Properties of ‐S‐ containing PU (PIBS‐PU) containing 72.5% PIB were investigated and compared to similar PUs made with HO‐PIB‐OH (PIBO‐PU). Hydrolytic resistance was studied by contact with phosphate‐buffered saline, oxidative resistance by immersing in concentrated HNO3, and metal ion oxidation resistance by exposure to CoCl2/H2O2. Hydrolytic and oxidative resistances of PIBS‐PU and PIBO‐PU are similar and superior to a commercial PDMS‐based PU, Elast‐Eon? E2A. According to 1H NMR spectroscopy the ‐S‐ in PIBS‐PUs remained unchanged upon treatment with HNO3, however, oxidized mainly to ‐SO2‐ by CoCl2/H2O2. Static mechanical properties of PIBS‐PU and PIBO‐PU are similar, except creep resistance of PIBS‐PU is surprisingly superior. The thermal stability of PIBS‐PUs is ~15 °C higher than that of PIBO‐PU. FTIR spectroscopy indicates H bonded S atoms (N‐H…S) between soft and hard segments, which noticeably affect properties. DSC and XRD studies suggest random low‐periodicity crystals dispersed within a soft matrix. Energy dispersive X‐ray spectroscopy–scanning electron microscopy indicates homogeneous distribution of S atoms on PIBS‐PU surfaces. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1119–1131  相似文献   

14.
Metal‐organic framework MIL‐53 (Fe)@C/graphite carbon nitride hybrid (MFeCN), a novel flame retardant, was synthesized by hydrothermal reaction and subsequently added into unsaturated polyester resin (UPR). The structure, morphology, and thermal stability of MFeCN were characterized by Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDS), and thermogravimetric analysis (TG). The thermal stability and flammability of the UPR composites were characterized by TG and cone calorimeter tests (CCT). The results of CCT demonstrated that the peak heat release rate (pHRR), total heat release (THR), peak smoke production rate (pSPR), and total smoke production (TSP) of UPR/MFeCN‐4 were reduced by 39.8%, 10.2%, 33.3%, and 14.5%, respectively, comparing with UPR. The results of TG and CCT indicated that MFeCN could improve the thermal stability, flame retardancy, and smoke suppression properties of the UPR composites. The residues after CCT were then characterized by laser Raman spectroscopy (LRS), XPS, and SEM. Finally, based on the above experimental results and analysis, the flame retardancy mechanism of MFeCN was proposed.  相似文献   

15.
In the present work, new classes of bio‐based polybenzoxazines were synthesized using eugenol as phenol source and furfurylamine and stearylamine as amine sources separately through solventless green synthetic process routes and were further reinforced with varying percentages (1, 3, 5, and 10 wt%) of silica (from rice husk) to attain hybrid composites. The molecular structure, cure behaviour, thermal stability, dielectric properties, and flame‐retardant behaviour of both benzoxazine monomers and benzoxazine composites were characterized using appropriate modern analytical techniques. The eugenol‐based benzoxazines synthesized using furfurylamine (FBz) and stearylamine (SBz) were cured at 223°C and 233°C, respectively. The differential scanning calorimetry (DSC) data reveal the glass transition temperatures (Tg) of FBz and SBz were 157°C and 132°C, respectively, and the maximum decomposition temperature (Tmax) as obtained from thermogravimetric analysis (TGA), were found to be 464°C and 398°C for FBz and SBz, respectively. The dielectric constants for FBz and SBz obtained at 1 MHz were 3.28 and 3.62, respectively. Furthermore, varying weight percentages (1, 3, 5, and 10 wt%) of 3‐mercaptopropyltrimethoxysilane (3‐MPTMS) functionalized bio‐silica reinforced the composite materials as evidenced by their improved thermal stability and lower dielectric constant. Data obtained from thermal and dielectric studies suggested that these polybenzoxazines could be used in the form of adhesives, sealants, and composites for high performance inter‐layer low‐k dielectric applications in microelectronics.  相似文献   

16.
Semi‐interpenetrating polymer network (semi‐IPN) coatings were prepared by using castor oil‐based polyurethane (PU) and nitrocellulose (NC) with various viscosity‐average molecular weights (Mη) from 6 × 104 to 42 × 104, and coated on a regenerated cellulose (RC) film to obtain water‐resistant film. The PU/NC coatings and coated films, which were cured at 80°C for 5 min and 2 min, respectively, were investigated by infrared (IR) and ultraviolet (UV) spectroscopy, X‐ray diffraction, swelling test, strength test, dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The results show that the crosslink densities of the PU/NC semi‐IPNs were smaller than that of pure PU, and decreased with the decrease of Mη of nitrocellulose (NC Mη), indicating NC molecules cohered intimately with PU, and hindered the PU network formation. The physical and mechanical properties of the films coated with PU/NC coatings were significantly improved. With the increase of NC Mη, the strength and thermal stability of the coated films increased, but the pliability, water resistivity, and optical transmission decreased slowly. The PU/NC coating with low NC Mη more readily penetrated into the RC film, and reacted with cellulose, resulting in a strong interfacial bonding and dense surface caused by intimate blend of PU/NC in the coated films. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1623–1631, 1999  相似文献   

17.
A series of polyurethane‐block‐poly(trifluoropropylmethyl)siloxane (PUFS) elastomers were prepared via a two‐step process from toluenediisocyanate (TDI), α ω‐bis(3‐aminopropyldiethoxylsilane) poly(trifluoropropylmethyl)siloxane (APFS), and poly(tetramethylene oxide) (PTMO). The PUFS films were formed through moisture curing and characterized by DSC, DMTA, TGA, mechanical testing, and water contact angle. It was found that the extent of microphase separation of the PUFS system would increase with the increase in APFS content, and result in the decrease in the tensile strength and the thermal stability. On the other hand, the crosslink density of the PUFS system would apparently increase with the increase in the TDI content, which reduced the microphase separation and improved the tensile properties and the thermal stability of the PUFS elastomers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
We synthesized a novel phosphorus‐containing triamine [9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐yl‐tris(4‐aminophenyl) methane (dopo‐ta)] from the nucleophilic addition of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐oxide and pararosaniline chloride, using triethylamine as an acid receiver. We confirmed the structure of dopo‐ta by IR, mass, and NMR spectra and elemental analysis. dopo‐ta served as a curing agent for diglycidyl ether of bisphenol A (DGEBA) and dicyclopentadiene epoxy (hp7200). Properties such as the glass‐transition temperature (Tg), thermal decomposition temperature, flame retardancy, moisture absorption, and dielectric properties of the cured epoxy resins were evaluated. The Tg's of cured DGEBA/dopo‐ta and hp7200/dopo‐ta were 171 and 190 °C, respectively. This high Tg phenomenon is rarely seen in the literature after the introduction of a flame‐retardant element. The flame retardancy increased with the phosphorus content, and a UL‐94 V‐0 grade was achieved with a phosphorus content of 1.80 wt % for DGEBA/dopo‐ta/diamino diphenylmethane (DDM) systems and 1.46 wt % for hp7200/dopo‐ta/DDM systems. The dielectric constants for DGEBA/dopo‐ta and hp7200/dopo‐ta were 2.91 and 2.82, respectively, implying that the dopo‐ta curing systems exhibited low dielectric properties. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5971–5986, 2005  相似文献   

19.
The 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) polymers, melamine polymers, and DOPO‐melamine copolymers have been successfully synthesized, and their flame retarding properties have also been investigated by blending with polypropylene (PP)/styrene‐ethylene‐butylene‐styrene (SEBS) alloys. Experimental results establish that all of them are good polymeric flame retardants. No blooming or color stains occur when they are incorporated into PP/SEBS alloys. Among lab‐made polymeric flame retardants, DOPO‐ melamine copolymers exhibit the best thermal stability and nonflammability. PP/SEBS alloys containing DOPO‐melamine copolymers display comparable thermal resistance and flame retarding behavior (Td = 290°C; char yield: 15.6%, LOI: 23, and flammability: UL‐94 V0) as the alloys containing common commercial flame retardants (i.e., DOPO, melamine, and ammonium polyphosphate). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The outstanding hydrolytic and oxidative stabilities of polyisobutylene‐based polyurethanes (PIB‐based PUs) were reported earlier. Herein, we summarize recent investigations aimed at further enhancing hydrolytic‐oxidative stabilities (in terms of resistance to aqueous buffer, nitric acid and CoCl2/H2O2) together with excellent mechanical properties. The purity and dryness of ingredients together with precise NCO/OH stoichiometry (~1.05) are essential to obtain PIB‐based PUs with improved properties. Static and dynamic mechanical properties were optimized by analyzing stress–strain traces, thermal (TGA, DSC) responses, self‐organization (XRD) profiles, and rheological (DMA, creep) information. According to microstructure and surface analyses (AFM, contact angle) annealing increases the segregation of individual segments and increases surface hydrophobicity, which in turn enhances the shielding of hydrolytically oxidatively vulnerable carbamate bonds by inert PIB barriers, and thus significantly improves hydrolytic‐oxidative stability. Annealing does not much affect bulk properties, such as static and dynamic mechanical and thermal properties; however, it increases damping over a wide temperature range. Annealed PIB‐based PU containing 72.5% PIB exhibits outstanding hydrolytic‐oxidative stability together with ~26 MPa tensile strength, ~500% elongation, and ~77 Microshore hardness. PIB‐based PUs are significantly more resistant to hydrolytic and oxidative degradation than ElastEon? E2A, a commercially available PDMS‐based PU, widely used for medical applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 532–543  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号