首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this article, we report the noncovalent linkage of terminal substituted oligo(dimethylsiloxanes) bearing cyclodextrins (CD) as host endgroups and adamantan or ferrocene, respectively, as guest endgroups. Structural characterization was performed by 1H NMR‐, IR‐, and mass spectroscopy. Electron microscopy studies show significant differences in the surface structure of the individual derivatives. In addition, the ferrocene‐terminated di‐and poly(dimethylsiloxanes) are distinguished by a red‐ox activity and reversibility, which also makes the complexes between the ferrocene‐ and CD functionalized siloxanes switchable via electrochemical stimuli. The evidence for a successful complexation of the end groups, and thus the successful supramolecular formation of the siloxane strands, was even performed by shift of the protons in the 1H NMR spectra. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2472–2482  相似文献   

2.
A biodegradable diblock copolymer of poly(ϵ‐caprolactone) (PCL) and poly(L ‐lactide) (PLLA) was synthesized and characterized. The inclusion compound (IC) of this copolymer with α‐cyclodextrin (α‐CD) was formed and characterized. Wide‐angle X‐ray diffraction showed that in the IC crystals α‐CDs were packed in the channel mode, which isolated and restricted the individual guest copolymer chains to highly extended conformation. Solid‐state 13C NMR techniques were used to investigate the morphology and dynamics of both the bulk and α‐CD‐IC isolated PCL‐b‐PLLA chains. The conformation of the PCL blocks isolated within the α‐CD cavities was similar to the crystalline conformation of PCL blocks in the bulk copolymer. Spin–lattice relaxation time (T1C) measurements revealed a dramatic difference in the mobilities of the semicrystalline bulk copolymer chains and those isolated in the α‐CD‐IC channels. Carbon‐observed proton spin–lattice relaxation in the rotating frame measurements (TH) showed that the bulk copolymer was phase‐separated, while, in the IC, exchange of proton magnetization through spin‐diffusion between the isolated guest polymer chains and the host α‐CD was not complete. The two‐dimensional solid‐state heteronuclear correlation (HetCor) method was also employed to monitor proton communication in these samples. Intrablock exchange of proton magnetization was observed in both the bulk semicrystalline and IC copolymer samples at short mixing times; however, even at the longest mixing time, interblock proton communication was not observed in either sample. In spite of the physical closeness between the isolated included guest chains and the host α‐CD molecules, efficient proton spin diffusion was not observed between them in the IC. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2086–2096, 2005  相似文献   

3.
Both star‐shaped poly(ε‐caprolactone) (PCL) having 4 arms (4sPCL) and 6 arms (6sPCL) and linear PCL having 1 arm (LPCL) and 2 arms (2LPCL) were synthesized and then investigated for inclusion complexation with α‐cyclodextrin (α‐CD). The supramolecular inclusion complexes (ICs) were in detail characterized by 1H NMR, differential scanning calorimetry, thermogravimetric analysis, wide angle X‐ray diffraction, solid‐state carbon nuclear magnetic resonance spectroscopy using cross‐polarization and magic‐angle spinning, and Fourier transform infrared, respectively. The stoichiometry (CL:CD, mol:mol) of all ICs increased with the increasing branch arm of PCL polymers, and it was in the order of α‐CD‐6sPCL1 ICs > α‐CD‐4sPCL ICs > α‐CD‐2LPCL ICs > α‐CD‐LPCL ICs. All analyses indicated that the branch arms of star‐shaped PCL polymers were included into the hydrophobic α‐CD cavities and their original crystalline properties were completely suppressed. Moreover, the ICs of star‐shaped PCL with α‐CD had a channel‐type crystalline structure similar to that formed between the linear PCL and α‐CD. Furthermore, the thermal stability of the free PCL polymers probably controlled that of the guest polymers included in the ICs. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4721–4730, 2005  相似文献   

4.
A novel soluble, reactive ladderlike 4,4′‐phenylene ether‐bridged polyvinylsiloxane (L) was synthesized successfully for the first time by a stepwise coupling polymerization (SCP) including hydrolysis and polycondensation. The monomer, 4,4′‐bis(vinyldimethoxysilyl)phenylene ether (M), was synthesized by Grignard reaction. The structures of the monomer and the polymer were characterized by infrared spectrometry (IR), nuclear magnetic resonance (1H NMR, 13C NMR, 29Si NMR), mass spectrometry (MS), differential scanning calorimetry (DSC), X‐ray diffraction (XRD), and gel permeation chromatography (GPC). It is proposed from the characterization data that the polymer possesses an ordered ladderlike structure. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2702–2710, 2000  相似文献   

5.
The effect of molecular weight of poly(ε‐caprolactone) (PCL) on the formation and stability of inclusion complexes (ICs) between α‐cyclodextrin (α‐CD) and PCL was investigated by FTIR, WAXD, and DSC measurements. ICs between α‐CD and PCLs with a wide range of number‐average molecular weight, Mn = 1.21 × 104 – 1.79 × 105, were prepared by mixing the aqueous solution of CD and acetone solution of PCL followed by stirring at 60 °C for 1h and at the room temperature for 1 day. FTIR, WAXD, and DSC measurement showed the PCL chains were included into the α‐CD cavity, and the crystallization of PCL was suppressed in the α‐CD cavity. Stoichiometry and yield of each IC varied with the molecular weight of guest PCL, and the effect of IC formation on the crystallization behaviour of guest polymer decreased with the increase of molecular weight of guest polymer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1433–1440, 2005  相似文献   

6.
The experimental procedures to place poly(ethylene 2,6‐naphthalate) (PEN) guest molecules within γ‐cyclodextrin (γ‐CD) host molecules are described along with the subsequent verification of inclusion‐compound (IC) formation. In addition, the simultaneous complexing of PEN and poly(ethylene terephthalate) (PET) with γ‐CD to form their common IC is documented. Coalescence from their common γ‐CD IC generates an intimate blend of the PET and PEN polymers contained therein. Thermal analysis via differential scanning calorimetry reveals thermal behavior indicative of an intimate blend of PET and PEN. 1H NMR analysis confirms that the intimate blending of PET and PEN achieved by coalescence from their common γ‐CD IC is not due to transesterification into a PET/PEN copolymer during thermal analysis. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 139–148, 2003  相似文献   

7.
In this article, our main goal is to combine hyperbranched polymer with β‐cyclodextrin (β‐CD) to establish a novel functional polymer species with core‐shell structure and supramolecular system for further application in inclusion technologies and the complex drugs delivery system. Therefore, two β‐CD polymer brushes based on hyperbranched polycarbosilane (HBP) as a hydrophobic core and poly(N,N‐dimethylaminoethyl methacrylate) (PDMA) carrying β‐CD units as a hydrophilic shell were synthesized. Hyperbranched polycarbosilane macroinitiator carrying ? Cl groups (HBP‐Cl) was also prepared by using 1,1,3,3‐tetrmethyldisiloxane, allyl alcohol, and chloroacetyl chloride as reagents. The molecular structures of HBP‐Cl macroinitiator and β‐CD polymer brushes were characterized by Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR) spectroscopies, size exclusion chromatography/multi‐angle laser light scattering (SEC/MALLS) and laser particle size analyzer. The results indicate that the grafted chain length of two β‐CD polymer brushes can be controlled by changing the feed ratio. Differential scanning calorimetry (DSC) results show that two β‐CD polymer brushes have two glass transition temperatures (Tgs) from a hydrophobic core part and a hydrophilic shell part, respectively, and the Tg from PDMA is higher than that of HBP‐g‐PDMA. Thermalgravimetric analyzer (TGA) analysis indicates that the thermostability of two β‐CD polymer brushes is higher than that of HBP, but is lower than that of HBP‐g‐PDMA. Using phenolphthalein (PP) as a guest molecule, molecular inclusion behaviors for two β‐CD polymer brushes were studied. It reveals that two β‐CD polymer brushes possess molecular inclusion capability in PP buffer solution with a fixed concentration. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5036–5052, 2008  相似文献   

8.
A novel linear poly(N‐isopropylacrylamide) (PNIPA) with β‐cylodextrin (β‐CD) moiety (PNIPA‐β‐CD) was synthesized by the conjugation of β‐CD carrying amino groups (EDA‐β‐CD) onto PNIPA with epoxy groups (P(NIPA‐co‐GMA), Mn = 3.86 × 104), and the related reaction conditions are investigated. PNIPA‐β‐CD was characterized by means of IR, NMR and UV spectroscopes, element analysis, and differential scanning calorimetry (DSC). The number‐average molecular weight (Mn) and the β‐CD content of the obtained PNIPA‐β‐CD are 4.87 × 104 and 18.8 wt %, respectively. PNIPA‐β‐CD can not only respond to temperature stimuli but also include guest molecules. Lower critical solution temperature (LCST) of aqueous PNIPA‐β‐CD solution is similar to that of PNIPA. The association constant (Ka) for PNIPA‐β‐CD with methyl orange (MO) is 2.4 × 103 L mol?1 at pH 1.4, which is comparable to that of EDA‐β‐CD (Ka = 2.9 × 103 L mol?1). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3516–3524, 2005  相似文献   

9.
A novel achiral monomer end‐capped with a phenyl‐[1,3,4]oxadiazolyl group and threaded through β‐cyclodextrin was synthesized to investigate the host‐guest interactions in the inclusion complex. 1H NMR studies revealed that one or two cyclodextrin molecules were threaded onto the synthesized achiral monomer, leading to the formation of a fibrous construction of self‐assembled inclusion complexes. The formation of a self‐assembled inclusion complex was identified using SEM and TEM. The highly ordered alignment of self‐assembled supramolecules was confirmed using polarized optical microscopy. We demonstrate an easy process for the fabrication of nano‐structured self‐assembled inclusion complexes in pyridine/ethanol (1 mL/10 mL) as well as the enhancement of photo‐induced fluorescence via monomers end‐capped with a phenyl‐[1,3,4]oxadiazolyl moiety threaded with β‐cyclodextrins. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3368–3374, 2010  相似文献   

10.
Well‐defined β‐cyclodextrin (β‐CD)‐appended biocompatible comb‐copolymer ethyl cellulose‐graft‐poly (ε‐caprolactone) (EC‐g‐PCL) was synthesized via the combination of ring‐opening polymerization (ROP) and click chemistry. The resulting products were characterized by 1H NMR, FT‐IR spectroscopy, and GPC. The synthesized comb‐copolymer could assemble to micelles, with the surface covered by β‐CD. The inclusion with ferrocene derivation was investigated by cyclic voltammetric (CV) experiments, which indicated the potential application of the micelles as nano‐receptors for molecule recognization and controlled drug release. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Methylmercury (MeHg) is one of the most toxic forms of mercury in the environment. It can be accumulated in fish through the food chain; after, consumption the fish is then dangerous to fetuses and younger children, causing abnormal brain development and nervous system disorders. Cyclodextrins (CDs) are cyclic oligosaccharides consisting of six, seven or eight units of glucose. In accord with the dimensions and hydrophilic–lipophilic properties, one can obtain inclusion of hydrophobic guests in a CD cavity. In the present work we used this characteristic of CD to obtain an inclusion compound between MeHgCl and the α‐cyclodextrin, looking for a new method to reduce MeHgCl toxicity and pre‐concentration. The inclusion compound was characterized through IR, 1H, 13C NMR and Raman spectroscopy. ­X‐ray diffraction and thermal analysis (TG, DTG and DSC) methods were also used. Finally, biological tests were carried out and the minimum inhibitory concentrations (MICs) for MeHgCl, α‐cyclodextrin, the MeHgCl–CD complex and a physical mixture were determined. This host–guest strategy using cyclodextrins offers an alternative and powerful method for mercury remediation. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
A novel 4,4′‐sulfonyldianiline‐bridged bis(β‐cyclodextrin (CD)) 2 was synthesized, and its complex stability constants (Ks) for the 1 : 1 inclusion complexation with bile salts, i.e., cholate (CA), deoxycholate (DCA), glycocholate (GCA), and taurocholate (TCA) have been determined in phosphate buffer (pH 7.2) at 25° by fluorescence spectroscopy. The result indicated that 2 can act as efficient fluorescent sensor and display remarkable fluorescence enhancement upon addition of optically inert bile salts. Structures of the inclusion complexes between bile salts and 2 were elucidated by 2D‐NMR experiments, indicating that the anionic tail group and the D ring of bile salts penetrate into one CD cavity of 2 from the wide opening deeply, while the phenyl moiety of the CD linker is partially self‐included in the other CD cavity to form a host–linker–guest binding mode. As compared with native β‐CD 1 upon complexation with bile salts, bis(β‐CD) 2 enhances the binding ability and molecular selectivity. Typically, 2 gives the highest Ks value of 26200 M ?1 for the complexation with CA, which may be ascribed to the simultaneous contributions of hydrophobic, H‐bond, and electrostatic interactions. These phenomena are discussed from the viewpoints of multiple recognition and induce‐fit interactions between host and guest.  相似文献   

13.
Photoreactive particle was prepared by graft copolymerization of 1,9‐nonandioldimethacrylate (NDMA) onto deproteinized natural rubber (DPNR) particles in latex stage. First, NDMA was mixed with α‐cyclodextrin (α‐CD) as a coupling agent to form an inclusion complex to stabilize a carbon–carbon double bond of NDMA as a bifunctional monomer. Second, the inclusion complex was graft‐copolymerized onto natural rubber (NR) in latex stage with potassium persulfate (KPS) as an initiator, after deproteinization with urea in the presence of surfactant. A terminal vinyl group of NDMA was used for the graft copolymerization, while the other remained in the resulting polymer, due to the coupling effect of the α‐CD. The products, after washing α‐CD out, were characterized by FTIR, X‐ray diffraction (XRD), 1H NMR and solid‐state 13C NMR measurements. The amount of residual carbon–carbon double bond after graft copolymerization was investigated in relation to the amount of rubber and reaction temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4111–4118, 2009  相似文献   

14.
The controlled secondary self‐assembly of amphiphilic molecules in solution is theoretically and practically significant in amphiphilic molecular applications. An amphiphilic β‐cyclodextrin (β‐CD) dimer, namely LA‐(CD)2, has been synthesized, wherein one lithocholic acid (LA) unit is hydrophobic and two β‐CD units are hydrophilic. In an aqueous solution at room temperature, LA‐(CD)2 self‐assembles into spherical micelles without ultrasonication. The primary micelles dissociates and then secondarily form self‐assemblies with branched structures under ultrasonication. The branched aggregates revert to primary micelles at high temperature. The ultrasound‐driven secondary self‐assembly is confirmed by transmission electron microscopy, dynamic light scattering, 1H NMR spectroscopy, and Cu2+‐responsive experiments. Furthermore, 2D NOESY NMR and UV/Vis spectroscopy results indicate that the formation of the primary micelles is driven by hydrophilic–hydrophobic interactions, whereas host–guest interactions promote the formation of the secondary assemblies. Additionally, ultrasonication is shown to be able to effectively destroy the primary hydrophilic–hydrophobic balances while enhancing the host–guest interaction between the LA and β‐CD moieties at room temperature.  相似文献   

15.
研究了室温下间苯二酚和甲基乙烯基酮分别与β-环糊精( β-CD)形成包结物后的几种不同固相反应,结果表明包结物A(间苯二酚/β-CD)与包结物B(甲基乙烯基酮/β-CD)反应能够很好地得到目的产物,产率及ee值分别为82.8%和78.4%;间苯二酚与包结物B反应仅得到低光学活性产物(ee值为19.5%);包结物A与甲基乙烯基酮反应却没有得到手性目的产物。以熔点、X-粉末衍射、固相核磁碳谱及ROESY多种方法对所形成的包结物进行了表征,包结物中主客体的比例(1:1)通过1H NMR (400 MHz)得以确定,文章对固相环加成反应的机制也进行了初步探讨。  相似文献   

16.
We successfully formed a series of inclusion complexes (ICs) between an α‐cyclodextrin (α‐CD) host and two kinds of guest polymers, nylon‐6 and nylon‐66. An attempt to achieve an intimate blend between nylon‐6 and nylon‐66 through the formation and dissociation of their common α‐CD IC was made. The formation of all nylon ICs was verified with wide‐angle X‐ray diffraction, differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) and cross‐polarized/magic‐angle‐spinning 13C NMR spectroscopy. The experimental results demonstrated that α‐CD could only host single nylon polymer chains in the IC channels, either nylon‐6 or nylon‐66 in their own complexes, and presumably either nylon in neighboring channels of their common IC. The IC‐coalesced blend of nylon‐6 and nylon‐66 was obtained after the removal of the host cyclodextrin from their common IC with dimethyl sulfoxide. The spectroscopic results (FTIR and 13C NMR) illustrated that there was a degree of intimate miscibility existing in the IC‐coalesced blend, but not in the solution‐cast physical blend, although X‐ray diffraction patterns showed that the crystal structure of the IC‐coalesced blend was similar to that of the physical blend. DSC thermal profiles suggested that nylon‐66 first formed crystals during coalescence and that the subsequent crystallization of nylon‐6 was greatly affected by the nylon‐66 crystallites because of the close proximity of the two components in portions of the coalesced blend. DSC observations also demonstrated that the melting of the coalesced blend did not lead to complete phase separation of the nylon‐6 and nylon‐66 components. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1369–1378, 2004  相似文献   

17.
Host–guest interactions between α‐, β‐ and γ‐cyclodextrins and vanadocene dichloride (Cp2VCl2) have been investigated by a combination of thermogravimetric analysis, differential scanning calorimetry, powder X‐ray diffraction and solid‐state and solution electron paramagnetic resonance (EPR) spectroscopy. The solid‐state results demonstrated that only β‐ and γ‐cyclodextrins form 1:1 inclusion complexes, while α‐cyclodextrin does not form an inclusion complex with Cp2VCl2. The β‐ and γ‐CD–Cp2VCl2 inclusion complexes exhibited anisotropic electron‐51V (I = 7/2) hyperfine coupling constants whereas the α‐CD–Cp2VCl2 system showed only an asymmetric peak with no anisotropic hyperfine constant. On the other hand, solution EPR spectroscopy showed that α‐cyclodextrin (α‐CD) may be involved in weak host–guest interactions in equilibrium with free vanadocene species. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The radical polymerization of Ntert‐butyl‐N‐allylacrylamide (t‐BAA) was carried out in a dimethyl sulfoxide/H2O mixture in the presence of β‐cyclodextrin (β‐CD). The polymerization proceeded with the complete cyclization of the t‐BAA unit and yielded optically active poly(t‐BAA). The IR spectrum of the obtained polymer showed that the cyclic structure in the polymer was a five‐membered ring. The optical activity of poly(t‐BAA) increased with an increasing molar ratio of β‐CD to the t‐BAA monomer. The interaction of β‐CD with t‐BAA was confirmed by 1H NMR and 13C NMR analyses of the polymerization system. It is suggested that interaction of the t‐BAA monomer with the hydrophobic cavity of β‐CD plays an important role in the asymmetric cyclopolymerization of t‐BAA. The radical copolymerization of t‐BAA with styrene (St), methyl methacrylate, ethyl methacrylate, or benzyl methacrylate (BMA) also produced optically active copolymers with a cyclic structure from the t‐BAA unit. St and BMA carrying a phenyl group were predicted to compete with t‐BAA for interaction with β‐CD in the copolymerization system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2098–2105, 2000  相似文献   

19.
Molecular motions of single polycarbonate (PC) chains threaded into crystalline γ‐cyclodextrin (γ‐CD) channels were examined using solid‐state 13C NMR and molecular dynamics simulations. The location of PC within the channels was confirmed by spin diffusion from a PC 13C label to natural‐abundance 13C of the γ‐CD. Rotor‐encoded longitudinal magnetization (RELM) (under 7‐kHz magic‐angle sample‐spinning conditions) was combined with multiple‐pulse 1H‐1H dipolar decoupling to detect large‐amplitude phenyl‐ring motion in both bulk PC and polycarbonate γ‐cyclodextrin inclusion compound (PC‐γ‐CD). The RELM results indicate that the phenyl rings in PC‐γ‐CD undergo 180° flips faster than 10 kHz just as in bulk PC. The molecular dynamics simulations show that the frequency of the phenyl‐ring flips depends on the cooperative motions of PC atoms and neighboring atoms of the γ‐CD channel. The distribution of protonated aromatic‐carbon laboratory and rotating‐frame 13C spin‐lattice relaxation rates for bulk PC and PC‐γ‐CD are similar but not identical. The distributions for both systems arise from site heterogeneities. For bulk PC, the heterogeneity is attributed to variations in local chain packing, and for PC‐γ‐CD the heterogeneity arises from variations in the location of the PC phenyl rings in the γ‐CD channel. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1271–1282, 2007  相似文献   

20.
The reaction of (E)‐3‐aryl‐2‐propenoic acid derivatives with (N‐isocyanimino) triphenylphosphorane proceeds smoothly at room temperature to afford the corresponding 2‐[(E)‐2‐aryl‐1‐ethenyl]‐1,3,4‐oxadiazole via an intramolecular aza‐Wittig reaction in good yields under neutral conditions. The structures of the products were deduced from their IR, 1H NMR, and 13C NMR spectra and mass spectrometry. © 2011 Wiley Periodicals, Inc. Heteroatom Chem 22:612–616, 2011; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20701  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号