首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we consider a two‐dimensional multi‐term time‐fractional Oldroyd‐B equation on a rectangular domain. Its analytical solution is obtained by the method of separation of variables. We employ the finite difference method with a discretization of the Caputo time‐fractional derivative to obtain an implicit difference approximation for the equation. Stability and convergence of the approximation scheme are established in the L ‐norm. Two examples are given to illustrate the theoretical analysis and analytical solution. The results indicate that the present numerical method is effective for this general two‐dimensional multi‐term time‐fractional Oldroyd‐B model.  相似文献   

2.
Among numerous iterative methods for solving the minimal nonnegative solution of an M‐matrix algebraic Riccati equation, the structure‐preserving doubling algorithm (SDA) stands out owing to its overall efficiency as well as accuracy. SDA is globally convergent and its convergence is quadratic, except for the critical case for which it converges linearly with the linear rate 1/2. In this paper, we first undertake a delineatory convergence analysis that reveals that the approximations by SDA can be decomposed into two components: the stable component that converges quadratically and the rank‐one component that converges linearly with the linear rate 1/2. Our analysis also shows that as soon as the stable component is fully converged, the rank‐one component can be accurately recovered. We then propose an efficient hybrid method, called the two‐phase SDA, for which the SDA iteration is stopped as soon as it is determined that the stable component is fully converged. Therefore, this two‐phase SDA saves those SDA iterative steps that previously have to have for the rank‐one component to be computed accurately, and thus essentially, it can be regarded as a quadratically convergent method. Numerical results confirm our analysis and demonstrate the efficiency of the new two‐phase SDA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A method for solving the time dependent Navier‐Stokes equations, aiming at higher Reynolds' number, is presented. The direct numerical simulation of flows with high Reynolds' number is computationally expensive. The method presented is unconditionally stable, computationally cheap, and gives an accurate approximation to the quantities sought. In the defect step, the artificial viscosity parameter is added to the inverse Reynolds number as a stability factor, and the system is antidiffused in the correction step. Stability of the method is proven, and the error estimations for velocity and pressure are derived for the one‐ and two‐step defect‐correction methods. The spacial error is O(h) for the one‐step defect‐correction method, and O(h2) for the two‐step method, where h is the diameter of the mesh. The method is compared to an alternative approach, and both methods are applied to a singularly perturbed convection–diffusion problem. The numerical results are given, which demonstrate the advantage (stability, no oscillations) of the method presented. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

4.
In this paper, we develop several two‐grid methods for the Nédélec edge finite element approximation of the time‐harmonic Maxwell equations. We first present a two‐grid method that uses a coarse space to solve the original problem and then use a fine space to solve a corresponding symmetric positive definite problem. Then, we present two types of iterative two‐grid methods, one is to add the kernel of the curl ‐operator in the fine space to a coarse mesh space to solve the original problem and the other is to use an inner iterative method for dealing with the kernel of the curl ‐operator in the fine space and the coarse space, separately. We provide the error estimates for the first two methods and present numerical experiments to show the efficiency of our methods.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we will investigate a two grid finite element discretization method for the semi‐linear hyperbolic integro‐differential equations by piecewise continuous finite element method. In order to deal with the semi‐linearity of the model, we use the two grid technique and derive that once the coarse and fine mesh sizes H, h satisfy the relation h = H2 for the two‐step two grid discretization method, the two grid method achieves the same convergence accuracy as the ordinary finite element method. Both theoretical analysis and numerical experiments are given to verify the results.  相似文献   

6.
In this paper, we present an application of some known generalizations of the Exp‐function method to the fifth‐order Burgers and to the seventh‐order Korteweg de Vries equations for the first time. The two examples show that the Exp‐function method can be an effective alternative tool for explicitly constructing rational and multi‐wave solutions with arbitrary parameters to higher order nonlinear evolution equations. Being straightforward and concise, as pointed out previously, this procedure does not require the bilinear representation of the equation considered. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
We develop a quasi‐two‐level, coarse‐mesh‐free characteristic nonoverlapping domain decomposition method for unsteady‐state convection‐diffusion partial differential equations in multidimensional spaces. The development of the domain decomposition method is carried out by utilizing an additive Schwarz domain decomposition preconditioner, by using an Eulerian‐Lagrangian method for convection‐diffusion equations and by delicately choosing appropriate interface conditions that fully respect and utilize the hyperbolic nature of the governing equations. Numerical experiments are presented to illustrate the method. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

8.
This survey enfolds rigorous analysis of the defect‐correction finite element (FE) method for the time‐dependent conduction‐convection problem which based on the Crank‐Nicolson scheme. The method consists of two steps: solve a nonlinear problem with an added artificial viscosity term on a FE grid and correct the solutions on the same grid using a linearized defect‐correction technique. The stability and optimal error estimate of the fully discrete scheme are derived. As a consequence, the effectiveness of the method to deal with high Reynolds number is illustrated in several numerical experiments. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 681–703, 2017  相似文献   

9.
In this article, we study an explicit scheme for the solution of sine‐Gordon equation when the space discretization is carried out by an overlapping multidomain pseudo‐spectral technique. By using differentiation matrices, the equation is reduced to a nonlinear system of ordinary differential equations in time that can be discretized with the explicit fourth‐order Runge–Kutta method. To achieve approximation with high accuracy in large domains, the number of space grid points must be large enough. This yields very large and full matrices in the pseudo‐spectral method that causes large memory requirements. The domain decomposition approach provides sparsity in the matrices obtained after the discretization, and this property reduces storage for large matrices and provides economical ways of performing matrix–vector multiplications. Therefore, we propose a multidomain pseudo‐spectral method for the numerical simulation of the sine‐Gordon equation in large domains. Test examples are given to demonstrate the accuracy and capability of the proposed method. Numerical experiments show that the multidomain scheme has an excellent long‐time numerical behavior for the sine‐Gordon equation in one and two dimensions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Queuing systems with finite buffers are reasonable models for many manufacturing, telecommunication, and healthcare systems. Although some approximations exist, the exact analysis of multi‐server and finite‐buffer queues with general service time distribution is unknown. However, the phase‐type assumption for service time is a frequently used approach. Because the Cox distribution, a kind of phase‐type distribution, provides a good representation of data with great variability, it has a vast area of application in modeling service times. The research focus is twofold. First, a theoretical structure of a multi‐server and finite‐buffer queuing system in which the service time is modeled by the two‐phase Cox distribution is studied. It is focused on finding an efficient solution to the stationary probabilities using the matrix‐geometric method. It is shown that the stationary probability vector can be obtained with the matrix‐geometric method by using level‐dependent rate matrices, and the mean queue length is computed. Second, an empirical analysis of the model is presented. The proposed methodology is applied in a case study concerning the geriatric patients. Some numerical calculations and optimizations are performed by using geriatric data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Lanczos‐type product methods (LTPMs), in which the residuals are defined by the product of stabilizing polynomials and the Bi‐CG residuals, are effective iterative solvers for large sparse nonsymmetric linear systems. Bi‐CGstab(L) and GPBi‐CG are popular LTPMs and can be viewed as two different generalizations of other typical methods, such as CGS, Bi‐CGSTAB, and Bi‐CGStab2. Bi‐CGstab(L) uses stabilizing polynomials of degree L, while GPBi‐CG uses polynomials given by a three‐term recurrence (or equivalently, a coupled two‐term recurrence) modeled after the Lanczos residual polynomials. Therefore, Bi‐CGstab(L) and GPBi‐CG have different aspects of generalization as a framework of LTPMs. In the present paper, we propose novel stabilizing polynomials, which combine the above two types of polynomials. The resulting method is referred to as GPBi‐CGstab(L). Numerical experiments demonstrate that our presented method is more effective than conventional LTPMs.  相似文献   

12.
A multilevel finite element method in space‐time for the two‐dimensional nonstationary Navier‐Stokes problem is considered. The method is a multi‐scale method in which the fully nonlinear Navier‐Stokes problem is only solved on a single coarsest space‐time mesh; subsequent approximations are generated on a succession of refined space‐time meshes by solving a linearized Navier‐Stokes problem about the solution on the previous level. The a priori estimates and error analysis are also presented for the J‐level finite element method. We demonstrate theoretically that for an appropriate choice of space and time mesh widths: hjh, kjk, j = 2, …, J, the J‐level finite element method in space‐time provides the same accuracy as the one‐level method in space‐time in which the fully nonlinear Navier‐Stokes problem is solved on a final finest space‐time mesh. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

13.
The Chebyshev‐Legendre spectral method for the two‐dimensional vorticity equations is considered. The Legendre Galerkin Chebyshev collocation method is used with the Chebyshev‐Gauss collocation points. The numerical analysis results under the L2‐norm for the Chebyshev‐Legendre method of one‐dimensional case are generalized into that of the two‐dimensional case. The stability and optimal order convergence of the method are proved. Numerical results are given. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

14.
Two improved split‐step θ methods, which, respectively, named split‐step composite θ method and modified split‐step θ‐Milstein method, are proposed for numerically solving stochastic differential equation of Itô type. The stability and convergence of these methods are investigated in the mean‐square sense. Moreover, an approach to improve the numerical stability is illustrated by choices of parameters of these two methods. Some numerical examples show the accordance between the theoretical and numerical results. Further numerical tests exhibit not only the Hamiltonian‐preserving property of the improved split‐step θ methods for a stochastic differential system but also the positivity‐preserving property of the modified split‐step θ‐Milstein method for the Cox–Ingersoll–Ross model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The critical delays of a delay‐differential equation can be computed by solving a nonlinear two‐parameter eigenvalue problem. The solution of this two‐parameter problem can be translated to solving a quadratic eigenvalue problem of squared dimension. We present a structure preserving QR‐type method for solving such quadratic eigenvalue problem that only computes real‐valued critical delays; that is, complex critical delays, which have no physical meaning, are discarded. For large‐scale problems, we propose new correction equations for a Newton‐type or Jacobi–Davidson style method, which also forces real‐valued critical delays. We present three different equations: one real‐valued equation using a direct linear system solver, one complex valued equation using a direct linear system solver, and one Jacobi–Davidson style correction equation that is suitable for an iterative linear system solver. We show numerical examples for large‐scale problems arising from PDEs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we consider a bi‐quadratic homogeneous polynomial optimization problem over two unit spheres arising in nonlinear elastic material analysis and in entanglement studies in quantum physics. The problem is equivalent to computing the largest M‐eigenvalue of a fourth‐order tensor. To solve the problem, we propose a practical method whose validity is guaranteed theoretically. To make the sequence generated by the method converge to a good solution of the problem, we also develop an initialization scheme. The given numerical experiments show the effectiveness of the proposed method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
We propose and analyze a two‐level method of discretizing the nonlinear Navier‐Stokes equations with slip boundary condition. The slip boundary condition is appropriate for problems that involve free boundaries, flows past chemically reacting walls, and other examples where the usual no‐slip condition u = 0 is not valid. The two‐level algorithm consists of solving a small nonlinear system of equations on the coarse mesh and then using that solution to solve a larger linear system on the fine mesh. The two‐level method exploits the quadratic nonlinearity in the Navier‐Stokes equations. Our error estimates show that it has optimal order accuracy, provided that the best approximation to the true solution in the velocity and pressure spaces is bounded above by the data. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 26–42, 2001  相似文献   

18.
In this paper, we consider the Crank‐Nicolson extrapolation scheme for the 2D/3D unsteady natural convection problem. Our numerical scheme includes the implicit Crank‐Nicolson scheme for linear terms and the recursive linear method for nonlinear terms. Standard Galerkin finite element method is used to approximate the spatial discretization. Stability and optimal error estimates are provided for the numerical solutions. Furthermore, a fully discrete two‐grid Crank‐Nicolson extrapolation scheme is developed, the corresponding stability and convergence results are derived for the approximate solutions. Comparison from aspects of the theoretical results and computational efficiency, the two‐grid Crank‐Nicolson extrapolation scheme has the same order as the one grid method for velocity and temperature in H1‐norm and for pressure in L2‐norm. However, the two‐grid scheme involves much less work than one grid method. Finally, some numerical examples are provided to verify the established theoretical results and illustrate the performances of the developed numerical schemes.  相似文献   

19.
ABSTRACT. Forest management planning of uneven‐aged stands involves forecasting of the tree size distribution. The temporal development of the size distribution in a forest stand may be described by the forward Kolmogorov equation. The objective of this study is to illustrate that numerical approximation of the solution to the equation provides a reasonably accurate way of forecasting future tree size distribution, especially for stands with non‐normal size distribution. Furthermore, a method for the practical application is devised. The analyses compare observed and forecasted tree size distributions for two forest stands, 1) an unthinned stand of Sitka spruce (Picea sitchensis (Bong.) Carr.), and 2) an uneven‐aged stand of beech (Fagus sylvatica L.) managed under the selection system. The analyses show that the size distribution in the uneven‐aged stand may be forecasted correctly for a 20 25 year period, while for the even‐aged stand the method seems to fail after 10 to 15 years.  相似文献   

20.
We present two efficient iterative schemes for solving the self‐consistent field equations of flexible–semiflexible diblock copolymers. One is a semi‐implicit scheme developed by employing asymptotic expansion, and the other is a hybrid scheme combining the robustness of the steepest descent method with the efficiency of the conjugate gradient method. In our position‐one‐dimensional and position‐two‐dimensional numerical experiments, we demonstrate that these schemes are much more efficient than the steepest descent method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号