首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper we propose some parallel multisplitting methods for solving consistent symmetric positive semidefinite linear systems, based on modified diagonally compensated reduction. The semiconvergence of the parallel multisplitting method is discussed. The results here generalize some known results for the nonsingular linear systems to the singular systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we generalize the nonstationary parallel multisplitting iterative method for solving the symmetric positive definite linear systems. With several choices of variable weighting matrices, the convergence properties of these generalized methods can be improved. Finally, the numerical comparison of several nonstationary parallel multisplitting methods are shown.  相似文献   

3.
Nonstationary synchronous two-stage multisplitting methods for the solution of the symmetric positive definite linear system of equations are considered. The convergence properties of these methods are studied. Relaxed variants are also discussed. The main tool for the construction of the two-stage multisplitting and related theoretical investigation is the diagonally compensated reduction (cf. [1]).  相似文献   

4.
文[1][2][3]中讨论AX=B的对称阵逆特征值问题,文[4][5][6]中讨论了半正定阵的逆特征值问题。本文讨论了空间了子空间上的对称正定及对称半正定阵的左右特征值反问题,给出了解存在的充分条件及解的表达式。  相似文献   

5.
Recently, Bai and Zhang [Numerical Linear Algebra with Applications, 20(2013):425439] constructed modulus-based synchronous multisplitting methods by an equivalent reformulation of the linear complementarity problem into a system of ?xed-point equations and studied the convergence of them; Li et al. [Journal of Nanchang University (Natural Science), 37(2013):307-312] studied synchronous block multisplitting iteration methods; Zhang and Li [Computers and Mathematics with Application, 67(2014):1954-1959] analyzed and obtained the weaker convergence results for linear complementarity problems. In this paper, we generalize their algorithms and further study global relaxed modulus-based synchronous block multisplitting multi-parameters methods for linear complementarity problems. Furthermore, we give the weaker convergence results of our new method in this paper when the system matrix is a block H+?matrix. Therefore, new results provide a guarantee for the optimal relaxation parameters, please refer to [A. Hadjidimos, M. Lapidakis and M. Tzoumas, SIAM Journal on Matrix Analysis and Applications, 33(2012):97-110, (dx.doi.org/10.1137/100811222)], where optimal parameters are determined.  相似文献   

6.
The convergence of the parallel matrix multisplitting relaxation methods presented by Wang (Linear Algebra and Its Applications 154/156 (1991) 473-486) is further investigated.The investigations show that these relaxation methods really have considerably larger convergence domains.  相似文献   

7.
In this work, we propose a new parallel multisplitting iterative method for non-symmetric positive definite linear systems. Based on optimization theory, the new method has two great improvements; one is that only one splitting needs to be convergent, and the other is that the weighting matrices are not scalar and nonnegative matrices. The convergence of the new parallel multisplitting iterative method is discussed. Finally, the numerical results show that the new method is effective.  相似文献   

8.
用Mn表示所有复矩阵组成的集合.对于A∈Mn,σ(A)=(σ1(A),…,σn(A)),其中σ1(A)≥…≥σn(A)是矩阵A的奇异值.本文给出证明:对于任意实数α,A,B∈Mn为半正定矩阵,优化不等式σ(A-|α|B) wlogσ(A+αB)成立,改进和推广了文[5]的结果.  相似文献   

9.
By an equivalent reformulation of the linear complementarity problem into a system of fixed‐point equations, we construct modulus‐based synchronous multisplitting iteration methods based on multiple splittings of the system matrix. These iteration methods are suitable to high‐speed parallel multiprocessor systems and include the multisplitting relaxation methods such as Jacobi, Gauss–Seidel, successive overrelaxation, and accelerated overrelaxation of the modulus type as special cases. We establish the convergence theory of these modulus‐based synchronous multisplitting iteration methods and their relaxed variants when the system matrix is an H + ‐matrix. Numerical results show that these new iteration methods can achieve high parallel computational efficiency in actual implementations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
In this article, we generalize modulus‐based synchronous multisplitting methods to horizontal linear complementarity problems. In particular, first we define the methods of our concern and prove their convergence under suitable smoothness assumptions. Particular attention is devoted also to modulus‐based multisplitting accelerated overrelaxation methods. Then, as multisplitting methods are well‐suited for parallel computations, we analyze the parallel behavior of the proposed procedures. In particular, we do so by solving various test problems by a parallel implementation of our multisplitting methods. In this context, we carry out parallel computations on GPU with CUDA.  相似文献   

11.
In this paper,a class of generalized parallel matrix multisplitting relaxation methods for solving linear complementarity problems on the high-speed multiprocessor systems is set up. This class of methods not only includes all the existing relaxation methods for the linear complementarity problems ,but also yields a lot of novel ones in the sense of multisplittlng. We establish the convergence theories of this class of generalized parallel multisplitting relaxation methods under the condition that the system matrix is an H-metrix with positive diagonal elements.  相似文献   

12.
For the non-Hermitian and positive semidefinite systems of linear equations, we derive necessary and sufficient conditions for guaranteeing the unconditional convergence of the preconditioned Hermitian and skew-Hermitian splitting iteration methods. We then apply these results to block tridiagonal linear systems in order to obtain convergence conditions for the corresponding block variants of the preconditioned Hermitian and skew-Hermitian splitting iteration methods.

  相似文献   


13.
In this paper, we present a preconditioned variant of the generalized successive overrelaxation (GSOR) iterative method for solving a broad class of complex symmetric linear systems. We study conditions under which the spectral radius of the iteration matrix of the preconditioned GSOR method is smaller than that of the GSOR method and determine the optimal values of iteration parameters. Numerical experiments are given to verify the validity of the presented theoretical results and the effectiveness of the preconditioned GSOR method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we address the problem of solving sparse symmetric linear systems on parallel computers. With further restrictive assumptions on the matrix (e.g., bidiagonal or tridiagonal structure), several direct methods may be used. These methods give ideas for constructing efficient data parallel preconditioners for general positive definite symmetric matrices. We describe two examples of such preconditioners for which the factorization (i.e., the construction of the preconditioning matrix) turns out to be parallel. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
本文在Bai的基础上提出改进的斜正规分裂(MSNS)和斜尺度化分裂(MSSS)迭代法,用以求解一类应用广泛的复对称线性系统,并证实MSNS和MSSS迭代法是无条件收敛的.通过利用一些Krylov子空间方法,本文给出相对应的非精确版本的MSNS(MSSS)方法.数值实验说明了所给方法的有效性.  相似文献   

16.
Several Krylov subspace iterative methods have been proposed for the approximation of the solution of general non‐symmetric linear systems. Odir is such a method. Here we study the restarted version of Odir for non‐symmetric indefinite linear systems and we prove convergence under certain conditions on the matrix of coefficients. These results hold for all the restarted Krylov methods equivalent to Odir. We also introduce a new truncated Odir method which is proved to converge for a large class of non‐symmetric indefinite linear systems. This new method requires one‐half of the storage of the standard Odir. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
Complex valued systems of equations with a matrix R + 1S where R and S are real valued arise in many applications. A preconditioned iterative solution method is presented when R and S are symmetric positive semi‐definite and at least one of R, S is positive definite. The condition number of the preconditioned matrix is bounded above by 2, so only very few iterations are required. Applications when solving matrix polynomial equation systems, linear systems of ordinary differential equations, and using time‐stepping integration schemes based on Padé approximation for parabolic and hyperbolic problems are also discussed. Numerical comparisons show that the proposed real valued method is much faster than the iterative complex symmetric QMR method. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Sparse symmetric indefinite linear systems of equations arise in numerous practical applications. In many situations, an iterative method is the method of choice but a preconditioner is normally required for it to be effective. In this paper, the focus is on a class of incomplete factorization algorithms that can be used to compute preconditioners for symmetric indefinite systems. A limited memory approach is employed that incorporates a number of new ideas with the goal of improving the stability, robustness, and efficiency of the preconditioner. These include the monitoring of stability as the factorization proceeds and the incorporation of pivot modifications when potential instability is observed. Numerical experiments involving test problems arising from a range of real‐world applications demonstrate the effectiveness of our approach.  相似文献   

19.
By reformulating the linear complementarity problem into a new equivalent fixed‐point equation, we deduce a modified modulus method, which is a generalization of the classical one. Convergence for this new method and the optima of the parameter involved are analyzed. Then, an inexact iteration process for this new method is presented, which adopts some kind of iterative methods for determining an approximate solution to each system of linear equations involved in the outer iteration. Global convergence for this inexact modulus method and two specific implementations for the inner iterations are discussed. Numerical results show that our new methods are more efficient than the classical one under suitable conditions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we discuss semiconvergence of the block SOR method for solving singular linear systems with p-cyclic matrices. Some sufficient conditions for the semiconvergence of the block SOR method for solving a general p-cyclic singular system are proved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号