首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
4,4′‐Bismaleimidodiphenylmethane (BMIPM)/O,O′‐diallylbisphenol A (BA) system was modified by organic rectorite (OREC) to develop a novel BMI/BA/OREC nanocomposite. The effect of OREC on the viscosity and reactivity of BMIPM/BA system was investigated. The mechanical properties of BMIPM/BA/OREC composites such as the flexural and impact strength were evaluated. The morphology of cured BMIPM/BA/OREC systems was investigated by X‐ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The hot water resistance of BMIPM/BA/OREC systems was discussed. The thermal property of BMIPM/BA/OREC systems was investigated using thermogravimetric analysis (TGA). The dynamic mechanical properties of BMIPM/BA/OREC systems were also measured. Results show that the addition of OREC has a significant influence on the reactivity of the BMIPM/BA system. Proper content of OREC can improve the flexural strength, impact strength, and hot water resistance of a BMIPM/BA system. The addition of OREC cannot decrease the thermal degradation temperature of cured BMIPM/BA system with a slight sacrifice of the glass transition temperature (Tg). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
In this work, the influence of fiber content and alkali treatment on the mechanical and thermal properties of Acacia leucophloea fiber-reinforced epoxy composites was studied. Ten composite samples were fabricated by varying fiber content (5, 10, 15, 20, and 25 wt%); both untreated and treated fiber were soaked in a 5% NaOH solution for 45 min by using hand-layup method. The composite reinforced with 20 wt% treated fiber content exhibited better mechanical properties and thermal properties. Fourier transform infrared analysis, morphological analysis by atomic force microscope, and scanning electron microscope of composites were also performed.  相似文献   

3.
Novel high performance bisphenol A dicyanate ester (BADCy) resins/poly(urea-formaldehyde) microcapsules filled with epoxy resins (MCEs) composites have been prepared. The effects of different contents of MCEs on the thermal and dielectric properties of cured BADCy were investigated using dynamic mechanical analyzer (DMA), thermalgravimetric analyzer (TGA) and broadband dielectric analyzer. The dielectric properties of BADCy/MCEs treated in hot water and hot air were also discussed. The morphologies of BADCy/MCEs composites were characterized by scanning electron microscopy (SEM). Results indicate that the appropriate content of MCEs can improve or maintain the thermal stability, the low dielectric constant and dielectric loss of cured BADCy mainly owing to higher conversion of cyanate ester (-OCN) groups. After aged in hot water and hot air, respectively, BADCy/MCEs composites with small content of MCEs can retain the low dielectric constant and dielectric loss.  相似文献   

4.
Adverse effects of a high‐water absorption rate on properties of a glass fiber–reinforced polyamide 6 (GF‐PA6) composite significantly reduce performance and limit application in humid environments. In this paper, a polyfunctional silane (PFS) coupling agent with amino (–NH2) and imino (–NH) groups and styrene acrylonitrile copolymer (SAN) were added to a composite, GF‐PA6, to prepare GF‐PA6/SAN/PFS composites via melt blending in a twin‐screw extruder. The effects of SAN and PFS content on the static and dynamic mechanical properties of the composites before and after water absorption were investigated in detail. The microstructure of the fracture surface was analyzed by a scanning electron microscope (SEM). The results show that the addition of SAN and PFS could effectively inhibit water absorption of the GF‐PA6 composites. The alkoxyl groups on PFS reacted chemically with the nitrile groups of SAN, which enriched SAN on the interface between the fiber and matrix during the extrusion and mixing process to improve the effect of water prevention. Therefore, the mechanical properties of the wet state were notably improved while preventing water from permeating the interface by only the addition of a small amount of SAN and PFS. Dynamic mechanical analysis (DMA) results showed that the addition of PFS improved the compatibility of PA6 with SAN and enhanced the interface adhesion between fiber and PA6. In terms of test result of the comprehensive performance, 10 phr SAN with 0.6 phr PFS was the best dosage.  相似文献   

5.
《先进技术聚合物》2018,29(1):111-120
In the present paper, different self‐reinforced polypropylene (PP) composites based on low‐cost commercial woven (w) and non‐woven (nw) fabrics were obtained. Hot compaction (HC) and film stacking (FS) followed by compression molding were used to prepared the composites. The fracture and failure behavior of the different materials was determined under different testing conditions through quasi‐static uniaxial tensile tests, Izod impact experiments and by means of fracture mechanics tests on mode I double‐edge deeply notched tensile specimens. In the case of the composite obtained by film stacking + compression molding (rPP/nw/w‐FS) and the hot‐compacted composite (nw/w‐HC) containing simultaneously woven and non‐woven fabrics, the acoustic emission technique was applied in situ in the tensile tests to determine their consolidation quality and to identify the failure mechanisms responsible for their fracture behavior. It was observed that both composites exhibited relatively similar high consolidation quality. However, the hot‐compacted composite presented a more uniform distribution of failure mechanisms (debonding and fiber fracture) than the film‐stacked composite. The hot‐compacted composite containing both types of reinforcements exhibited the best combination of mechanical (tensile, impact, and fracture) properties. Therefore, this composite appeared as the most promising for structural applications among the different composites investigated.  相似文献   

6.
Mechanical, dynamic mechanical, and rheological behaviors of a short p‐aramid fiber reinforced thermoplastic polyurethane (TPU) have been studied in the range of 0–30 wt% of fibers. The tensile strength of the composite is improved slightly at higher fiber content with a minimum at around 10 wt% of fibers. The addition of fibers markedly reduces elongation at break and entails a steady increase in the elastic modulus, but decreases the wear resistance of the matrix. Storage modulus (E′) is increased and the shapes of loss tangent (tan δ) peaks point to a possible fiber–matrix interaction. Rheological studies show a power law behavior for all composites and increased viscosity with fiber loading. Study of the tensile and cryogenic fracture surfaces by scanning electron microscopy (SEM) indicates good correlation between the modes of failure and strength of the composites. The micrographs reveal good interfacial adhesion and extensive peeling and fibrillation of the fibers in the compounded and fractured composites. Theoretical models have been used to fit the experimental modulus data. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
A series novel composites based on poly(L‐lactide) (PLLA) oligomer modified mesoporous silica (MCM41) homogeneous dispersed into poly(L‐lactide‐co‐trimethylene carbonate‐co‐glycolide) (PLTG) terpolymer has been successfully prepared. The structure of PLTG terpolymer was characterized by 1H NMR. The structure and properties of modified and unmodified MCM41 were attested by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyzer (TGA), X‐ray diffraction (XRD), N2 adsorption–desorption, scanning electron microscope (SEM), and transmission electron microscope (TEM), which demonstrated that the MCM41 was successfully grafted by the PLLA oligomer. The effect of different concentration of modified MCM41 in PLTG matrix on thermal properties, mechanical properties, and hydrophilicity was investigated by TGA, differential scanning calorimetry (DSC), mechanical testing, contact angle measurement, and SEM. The results of mechanical tests showed that 5 wt% of modified MCM41 nanoparticles gave rise to optimal reinforcing effect. The tensile strength, Young's modulus, and elongation at break of the PLTG/PLLA‐MCM41 (5%) composites were 33.2 Mpa, 1.58 Gpa, and 268.7%, respectively, which were all higher than the PLTG/MCM41 (5%) composites and pristine PLTG matrix, which were due to good interfacial adhesion between the PLTG matrix and MCM41 nanoparticles. TGA and DSC have shown that 5% modified MCM41 in the PLTG increased the temperature of composite degradation and Tg. Water contact angle measurement showed the hydrophilicity of the composites increases with the increase of modified MCM41 content. The live/dead assay showed that the modified MCM41 existing on the PLTG matrix presents very excellent cytocompatibility. Therefore, the novel composite material represents promising way for bone tissue engineering application.  相似文献   

8.
Precursor of polyimide, polyamic acid has been prepared sucessfully. Acid‐modified carbon nanotube (MWCNT) was grafted with soluble polyimide then was added to the polyamic acid and heated to 300 °C to form polyimide/carbon nanotube composite via imidation. Morphology, mechanical properties and electrical resistivity of the MWCNT/polyimide composites have been studied. Transmission electron microscope microphotographs show that the diameter of soluble polyimide‐grafted MWCNT was increased from 30–60 nm to 200 nm, that is a thickness of 70–85 nm of the soluble polyimide was grafted on the MWCNT surface. PI‐g‐MWCNT was well dispersed in the polymer matrix. Percolation threshold of MWCNT/polyimide composites has been investigated. PI‐g‐MWCNT/PI composites exhibit lower electrical resistivity than that of the acid‐modified MWCNT/PI composites. The surface resistivity of 5.0 phr MWCNT/polyimide composites was 2.82 × 108 Ω/cm2 (PI‐g‐MWCNT) and 2.53 × 109 Ω/cm2 (acid‐modified MWCNT). The volume resistivity of 5.0 phr MWCNT/polyimide composites was 8.77 × 106 Ω cm (PI‐g‐MWCNT) and 1.33 × 1013 Ω cm (acid‐modified MWCNT).Tensile strength and Young's modulus increased significantly with the increase of MWCNT content. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3349–3358, 2007  相似文献   

9.
Two kinds of hybrids based on diallyl bisphenol A modified bismaleimide (BMI‐BA) and carbon nanotubes (CNTs) or aminated carbon nanotubes (A‐CNTs) were prepared, their static and dynamic mechanical properties were investigated in detail by using impact and flexural measurements as well as dynamic mechanical analysis (DMA). Results show that these mechanical properties of hybrids greatly depended on the nature (or the functional groups on CNTs) and loading in BMI‐BA matrix of hybrids. For example, the BMI‐BA/A‐CNT hybrid with a desirable amount of A‐CNTs has a higher impact strength than the original BMI‐BA resin, while all BMI‐BA/CNT hybrids have lower impact strength than the original BMI‐BA resin. DMA test shows that all hybrids have somewhat lower storage modulus and glass transition temperature than a pure polymer, which maybe attributed to the fact that both CNTs and A‐CNTs shift the curing peak to a higher temperature range and thus decrease the crosslinking density of networks. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Nowadays, the awareness of the public along with strict legitimate forces over the use of polymers, the manufacturing and automotive industries started using the renewable materials. Since, natural fiber reinforced composites play vital role in developing lightweight structural materials, this study focuses on utilizing sisal fiber as reinforcement in polyester matrix along with natural filler. The influence of fiber length and fiber volume fraction on the mechanical properties of sisal fiber was studied initially. Test results revealed that the composite with 20?mm fiber length and 20-volume fraction composite has better mechanical properties. Furthermore, the effect of fiber surface modification has been analyzed using various chemical solutions such as NaOH, KMnO4, stearic acid, and maleic acid. Of these, NaOH treatment enhances the mechanical properties of composite compared to all other cases. Finally, the influence of Acacia nilotica, a natural filler addition into the alkali-treated sisal fiber composite has been evaluated by mechanical and dynamic mechanical properties. It is found that the addition of natural filler and surface treatment has enhanced the properties of composites due to their synergetic effect. This effect improves the adhesion and uniform stress transfer among the reinforcements. The fiber surface morphology was evaluated using micrographs obtained from scanning electron microscope.  相似文献   

11.
Viscose fiber reinforced polypropylene (PP/VF) composites were manufactured using long fiber thermoplastic (LFT) extrusion techniques with two different methods namely LFT‐l and LFT‐2. The compatibilizer [maleated polypropylene (MAPP)] and dispersing agent [stearic acid (SA)] were added to the PP/VF in order to improve the fiber dispersion and interfacial adhesion. The PP/VF composites manufactured using LFT‐2 showed better fiber dispersion with higher tensile and flexural properties compared to the composites manufactured using LFT‐1 method. Similarly, the impact strength and toughness of the LET‐2 composites showed an improvement of 36 and 20% than LFT‐1 whereas the average fiber length of composites was decreased from 6.9 mm to 4.4 mm because of the increase in shear energy as a result of residence time. Further, the addition of SA and MAPP to LFT‐2 process has significantly improved the fiber dispersion and mechanical performance. The fiber dispersion and fracture behavior of the LFT‐1 and LFT‐2 composites were studied using scanning electron microscopy analysis. The Fourier transformation infrared spectra were also studied to ascertain the existence of type of interfacial bonds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.

Long glass fiber reinforced poly(butylene terephthalate) composites (LGF/PBT) were prepared by a new process. PBT oligomers with low melt viscosity were impregnated into the reinforcing glass fiber and then grafted to the reinforcing glass fiber surface treated with a silane coupling agent during solid‐state polymerization. The reinforcing glass fiber, after removing ungrafted PBT from LGF/PBT, was investigated with the result showing the presence of a grafted PBT layer on the surface of treated glass fiber. The mechanical properties of the composites were significantly improved owing to the grafting of the PBT macromolecules. The fiber length distribution and fiber arrangement in the injection molded composites were also studied and the results showed that a small amount long glass fiber could be connected at junction points in the composites, which were of benefit to the mechanical properties of the composites.  相似文献   

13.
BaTiO3/bismaleimide/epoxy/glass fiber reinforced composites were prepared using E-glass fiber (E-GF) and silane coated E-glass fiber (SC-EGF) separately as reinforcement. BaTiO3 nanoparticles were prepared by hydrothermal method. Results show that the addition of BaTiO3 nanoparticles has significant effects on the mechanical and dielectric properties of the composite. Both E-GF and SC-EGF reinforced BaTiO3/bismaleimide/epoxy composites with 2 wt percentages of BaTiO3 nanoparticles showed improved tensile strength, flexural strength and dielectric constant and those with 3% showed high dielectric strength indicating this composition is more adaptable for high voltage insulating applications. Dielectric constants and dielectric loss of the fabricated nanocomposites have been obtained at higher frequencies (in GHz) by using Vector Network Analyser at room temperature and was found to be highest for the BMI-Epoxy nanocomposite with 1% weight nanofiller.  相似文献   

14.
Multi‐walled carbon nanotubes (MWCNTs) were acidified with nitration mixture, and the Fe2O3‐MWCNTs (iron oxide coated multi‐walled carbon nanotubes) hybrid material via sol‐gel method then verified the results through scanning electron microscope, X‐ray diffraction, and thermal gravimetric analysis. We modified the hybrid material with silane coupling agent (KH560), Fe2O3‐MWCNTs/epoxy, MWCNTs/epoxy composites coating, and the pure epoxy coatings were respectively prepared. The properties of the composite coatings were tested through the electrochemical workstation (electrochemical impedance spectroscopy), shock experiments, and thermal gravimetric analysis. Finally, we used scanning electron microscope to observe the surface conditions of the coatings. The results show that Fe2O3‐MWCNTs have good dispersion in the epoxy resin, and the Fe2O3‐MWCNTs/epoxy composite coatings have enhanced mechanical properties and corrosion resistance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Napier grass fiber strands were used as reinforcement to obtain composites with epoxy resin as matrix. To improve the surface, these fiber strands were treated with alkali solution. The composites were prepared by means of hand lay-up molding, then the effects of Napier grass fiber strand loading on mechanical properties such as tensile, flexural and impact, interfacial bonding, and chemical resistance were investigated. The composite with 20 wt.% Napier grass fiber strands gives excellent mechanical properties and chemical resistance, showing that it has the best bonding and adhesion of the composites. SEM micrographs of fractured and worn surfaces clearly demonstrate the interfacial adhesion between fiber and matrix. Alkali-treated Napier grass fiber strand–reinforced composites have better resistance to water and chemicals than the untreated fiber strand composites.  相似文献   

16.
The interface of fibrous composites is a key factor to the whole properties of the composites. In this study, the effects of air dielectric barrier discharge (DBD) plasma discharge power density on surface properties of poly(p‐phenylene benzobisoxazole) (PBO) fiber and the interfacial adhesion of PBO fiber reinforced poly(phthalazinone ether sulfone ketone) (PPESK) composite were investigated by several characterization methods, including XPS, SEM, signal fiber tensile strength, interlaminar shear strength, and water absorption. After the air DBD plasma treatment at a power density of 41.4 W/cm3, XPS analysis showed that some polar functional groups were introduced on the PBO fiber surface, especially the emergence of a new oxygen‐containing group (?O–C = O group). SEM observations revealed that the air DBD plasma treatment had a great influence on surface morphologies of the PBO fiber, while the signal fiber tensile strength results showed only a small decline of 5.9% for the plasma‐treated fiber. Meanwhile, interlaminar shear strength value of PBO/PPESK composite was increased to 44.71 MPa by 34.5% and water absorption of the composite decreased from 0.46% for the untreated specimen to 0.27%. The results showed that the air DBD plasma treatment can effectively improve the properties of the PBO fiber surface and the PBO/PPESK composite interface. Results obtained from the above analyses also showed that both the fiber surface and the composite interface performance would be reduced when an undue plasma discharge power density was applied. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Polyaniline/neodymium(III) oxide (PANI/Nd2O3) composites were synthesized by in situ chemical oxidative polymerization method, and the new electrode materials were used for supercapacitor. The composites were characterized physically by scanning electron microscope (SEM), Fourier transform infrared spectra (FTIR) and X‐ray diffraction (XRD). SEM, IR and XRD results showed the existence of interactions between PANI and Nd2O3. The electrochemical capacitance performance of the composites was investigated by cyclic voltammetry, galvanostatic charge–discharge tests and ac impedance spectroscopy with a three‐electrode system in 6 M KOH solution. Cyclic voltammetry and galvanostatic charge/discharge tests proved that the addition of Nd2O3 enhanced the capacitance of the composites. However, the conductivity of the composites decreases with increasing the amount of Nd2O3. Electrochemical impedance tests manifest that the charge‐transfer resistance of the composites is smaller than that of the pure PANI, which indicates the addition of Nd2O3 could lower resistance and facilitate the charge transfer of the active materials. All results support that Nd2O3 has a significant contribution to the performance of PANI and makes the composites have more active sites for faradiac reaction and larger specific capacitance than pure PANI. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Polyoxymethylene (POM)/multiwalled carbon nanotubes (MWNTs) nanocomposites were prepared through a simple solution‐evaporation method assisted by ultrasonic irradiation. To enhance the dispersion of MWNTs in POM, MWNTs were chemically functionalized with PEG‐substituted amine (MWNT‐g‐PEG), which exhibited strong affinity with POM due to their similar molecular structure. The thermal conductivity and the mechanical properties of the composites were investigated, which showed that the thermal conductive properties of POM were improved remarkably in the presence of MWNTs, whereas reduced by using MWNT‐g‐PEG due to the heat transport barrier of the grafted‐PEG‐substituted amine chain. A nonlinear increase of the thermal conductivity was observed with increasing MWNTs content, and the Maxwell‐Eucken model and the Agari model were used for theoretical evaluation. The relatively high effective length factor of the composite predicted with mixture equation indicated that there were few entangles of MWNTs for the samples of MWNT‐g‐PEG in the composites. The mechanical strength of the composites can be improved remarkably by using suitable content of such functionalized MWNTs, and with the increase of the aliphatic chain length of PEG‐substituted amine, the toughness of the composites can be enhanced. Transmission electron microscope result indicated that MWNT‐g‐PEG exhibited strong affinity with POM and a good dispersion of MWNTs was achieved in POM matrix. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 905–912, 2010  相似文献   

19.
The unsaturated hyperbranched polyester (UH20) based on Boltorn™ H20 (H20) end‐capped with methacrylate groups and carboxylic acid groups was introduced to treat calcium carbonate (CaCO3) as a new type of surface modifier by a wet‐coating technique. The interaction between CaCO3 and modifier was proven to be due to the ionic character by FT‐IR after the extraction with acetone. The maximum amount of tightly bonded UH20 modifier was determined to be around 9% by thermogravimetric analysis (TGA). The incorporation of CaCO3 coated with UH20 into high‐density polyethylene (HDPE) decreased the mechanical performance of HDPE/CaCO3 composite in comparison with CaCO3 coated with stearic acid. In the presence of a small amount of dicumyl peroxide (DCP), a greatly improvement of the notched impact strength as well the tensile strength of HDPE/CaCO3 coated with UH20 composite was obtained. An enhanced effect in the mechanical performance of the composite between CaCO3 coated with UH20 and HDPE matrix in the existence of DCP was suggested. Moreover, the morphological structures of impact fracture surface of the HDPE/CaCO3 composites were studied by scanning electron microscopy (SEM) to confirm the possible mechanism for explaining the improvement of mechanical properties of the composite. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
The anisotropic mechanical properties of the thermoplastic elastomer (TPE) in situ reinforced with thermotropic liquid‐crystalline polymer (TLCP) fibers were investigated by uniaxial, strip‐biaxial, and equibiaxial tensile measurements. The in situ composite sheets were prepared from an immiscible blend of a TLCP, Rodrun LC3000, and a TPE, styrene‐(ethylene butylene)‐styrene (SEBS) triblock copolymer, by a melt extrusion process. The uniaxial orientation of the TLCP fibers in the TPE matrix generated during processing yielded a significant mechanical anisotropy in the composites. The biaxial tensile measurements clearly demonstrated the anisotropic mechanical properties of the composites: The modulus in the direction parallel to the machine direction (MD) was considerably higher than that in the transverse direction (TD), even at large deformations; in equibiaxial stretching, the yield strain in the MD was smaller than that in the TD; the composite containing 10 wt % of TLCP exhibited the highest mechanical anisotropy among the composites, with 0–30 wt % TLCP. The latter result was in accord with the SEM observation that the composite with 10 wt % of TLCP possessed the best fibrillar morphology and the highest degree of uniaxial orientation of the TLCP fibers. The yield strains in uni‐ and biaxial elongation for the composite containing 10 wt % of TLCP were almost the same as those for the neat styrene‐ethylene butylene‐styrene. The TLCP phase with good fibrillation did not appreciably alter the original yielding characteristics of the elastomer matrix. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 135–144, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号