首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unified transform method introduced by Fokas can be used to analyze initial‐boundary value problems for integrable evolution equations. The method involves several steps, including the definition of spectral functions via nonlinear Fourier transforms and the formulation of a Riemann‐Hilbert problem. We provide a rigorous implementation of these steps in the case of the mKdV equation in the quarter plane under limited regularity and decay assumptions. We give detailed estimates for the relevant nonlinear Fourier transforms. Using the theory of L2‐RH problems, we consider the construction of quarter plane solutions which are C1 in time and C3 in space.  相似文献   

2.
We consider the long time behavior of solutions to the magnetohydrodynamics‐ α model in three spatial dimensions. Time decay rate in L2‐norm of the solution is obtained. Similar results for a generalized Leray‐ α‐magnetohydrodynamics model are also established. As a by‐product, an optimal time decay rate for the Navier–Stokes‐ α model is achieved. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
4.
We consider the periodic problem for 2‐fluid nonisentropic Euler‐Poisson equations in semiconductor. By choosing a suitable symmetrizers and using an induction argument on the order of the time‐space derivatives of solutions in energy estimates, we obtain the global stability of solutions with exponential decay in time near the nonconstant steady‐states for 2‐fluid nonisentropic Euler‐Poisson equations. This improves the results obtained for models with temperature diffusion terms by using the pressure functions pν in place of the unknown variables densities nν.  相似文献   

5.
《Mathematische Nachrichten》2017,290(13):1939-1970
We are concerned with the study of the Cauchy problem for the Navier–Stokes–Poisson system in the critical regularity framework. In the case of a repulsive potential, we first establish the unique global solvability in any dimension for small perturbations of a linearly stable constant state. Next, under a suitable additional condition involving only the low frequencies of the data and in the L2‐critical framework (for simplicity), we exhibit optimal decay estimates for the constructed global solutions, which are similar to those of the barotropic compressible Navier–Stokes system. Our results rely on new a priori estimates for the linearized Navier–Stokes–Poisson system about a stable constant equilibrium, and on a refined time‐weighted energy functional.  相似文献   

6.
The global wellposedness in Lp(?) for the Chern–Simons–Dirac equation in the 1+1 space and time dimension is discussed. We consider two types of quadratic nonlinearity: the null case and the non-null case. We show the time global wellposedness for the Chern–Simon–Dirac equation in the framework of Lp(?), where 1≤p≤∞ for the null case. For the scaling critical case, p = 1, mass concentration phenomena of the solutions may occur in considering the time global solvability. We invoke the Delgado–Candy estimate which plays a crucial role in preventing concentration phenomena of the global solution. Our method is related to the original work of Candy (2011), who showed the time global wellposedness for the single Dirac equation with cubic nonlinearity in the critical space L2(?).  相似文献   

7.
We consider the long time behavior of solutions to the magnetohydrodynamics equations in two and three spatial dimensions. It is shown that in the absence of magnetic diffusion, if strong bounded solutions were to exist their energy cannot present any asymptotic oscillatory behavior, the diffusivity of the velocity is enough to prevent such oscillations. When magnetic diffusion is present and the data is only in L 2, it is shown that the solutions decay to zero without a rate, and this nonuniform decay is optimal.  相似文献   

8.
We investigate the decay property of a Timoshenko system of thermoelasticity in the whole space for both Fourier and Cattaneo laws of heat conduction. We point out that although the paradox of infinite propagation speed inherent in the Fourier law is removed by changing to the Cattaneo law, the latter always leads to a solution with the decay property of the regularity‐loss type. The main tool used to prove our results is the energy method in the Fourier space together with some integral estimates. We derive L2 decay estimates of solutions and observe that for the Fourier law the decay structure of solutions is of the regularity‐loss type if the wave speeds of the first and the second equations in the system are different. For the Cattaneo law, decay property of the regularity‐loss type occurs no matter what the wave speeds are. In addition, by restricting the initial data to with a suitably large s and γ ∈ [0,1], we can derive faster decay estimates with the decay rate improvement by a factor of t?γ/2. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
We consider the asymptotic behavior of the strong solution to the incompressible magnetohydrodynamics (MHD) equations in a half space. The Lr‐decay rates of the strong solution and its derivatives with respect to space variables and time variable, including the L1 and L decay rates of its first order derivatives with respect to space variables, are derived by using Lq ? Lr estimates of the Stokes semigroup and employing a decomposition for the nonlinear terms in MHD equations. In addition, if the given initial data lie in a suitable weighted space, we obtain more rapid decay rates than observed in general. Similar results are known for incompressible Navier–Stokes equations in a half space under same assumption. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
We derive residual‐based a posteriori error estimates of finite element method for linear wave equation with discontinuous coefficients in a two‐dimensional convex polygonal domain. A posteriori error estimates for both the space‐discrete case and for implicit fully discrete scheme are discussed in L(L2) norm. The main ingredients used in deriving a posteriori estimates are new Clément type interpolation estimates in conjunction with appropriate adaption of the elliptic reconstruction technique of continuous and discrete solutions. We use only an energy argument to establish a posteriori error estimates with optimal order convergence in the L(L2) norm.  相似文献   

11.
The goal of the paper is to analyse properties of solutions for linear thermoelastic systems of type III in one space variable. Our approach does not use energy methods, it bases on a special diagonalization procedure which is different in different parts of the phase space. This procedure allows to derive explicit representations of solutions. These representations help to prove results for well‐posedness of the Cauchy problem, LPLq decay estimates on the conjugate line and results for propagation of singularities. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
We consider the long‐time behavior and optimal decay rates of global strong solution to three‐dimensional isentropic compressible Navier–Stokes (CNS) system in the present paper. When the regular initial data also belong to some Sobolev space with l?4 and s∈[0, 1], we show that the global solution to the CNS system converges to the equilibrium state at a faster decay rate in time. In particular, the density and momentum converge to the equilibrium state at the rates (1 + t)?3/4?s/2 in the L2‐norm or (1 + t)?3/2?s/2 in the L‐norm, respectively, which are shown to be optimal for the CNS system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The object of this paper is threefold. First, we investigate in a Hilbert space setting the utility of approximate source conditions in the method of Tikhonov–Phillips regularization for linear ill‐posed operator equations. We introduce distance functions measuring the violation of canonical source conditions and derive convergence rates for regularized solutions based on those functions. Moreover, such distance functions are verified for simple multiplication operators in L2(0, 1). The second aim of this paper is to emphasize that multiplication operators play some interesting role in inverse problem theory. In this context, we give examples of non‐linear inverse problems in natural sciences and stochastic finance that can be written as non‐linear operator equations in L2(0, 1), for which the forward operator is a composition of a linear integration operator and a non‐linear superposition operator. The Fréchet derivative of such a forward operator is a composition of a compact integration and a non‐compact multiplication operator. If the multiplier function defining the multiplication operator has zeros, then for the linearization an additional ill‐posedness factor arises. By considering the structure of canonical source conditions for the linearized problem it could be expected that different decay rates of multiplier functions near a zero, for example the decay as a power or as an exponential function, would lead to completely different ill‐posedness situations. As third we apply the results on approximate source conditions to such composite linear problems in L2(0, 1) and indicate that only integrals of multiplier functions and not the specific character of the decay of multiplier functions in a neighbourhood of a zero determine the convergence behaviour of regularized solutions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper we prove nonexistence of stationary weak solutions to the Euler–Poisson equations and the Navier–Stokes–Poisson equations in ? N , N ≥ 2, under suitable assumptions of integrability for the density, velocity and the potential of the force field. For the time dependent Euler–Poisson equations we prove nonexistence result assuming additionally temporal asymptotic behavior near infinity of the second moment of density. For a class of time dependent Navier–Stokes–Poisson equations in ? N this asymptotic behavior of the density can be proved if we assume the standard energy inequality, and therefore the nonexistence of global weak solution follows from more plausible assumption in this case.  相似文献   

15.
In this paper, we consider the compressible bipolar Navier–Stokes–Poisson equations with a non‐flat doping profile in three‐dimensional space. The existence and uniqueness of the non‐constant stationary solutions are established when the doping profile is a small perturbation of a positive constant state. Then under the smallness assumption of the initial perturbation, we show the global existence of smooth solutions to the Cauchy problem near the stationary state. Finally, the convergence rates are obtained by combining the energy estimates for the nonlinear system and the L2‐decay estimates for the linearized equations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we are concerned with the system of the non‐isentropic compressible Navier–Stokes equations coupled with the Maxwell equations through the Lorentz force in three space dimensions. The global existence of solutions near constant steady states is established, and the time‐decay rates of perturbed solutions are obtained. The proof for existence is due to the classical energy method, and the investigation of large‐time behavior is based on the linearized analysis of the non‐isentropic Navier–Stokes–Poisson equations and the electromagnetic part for the linearized isentropic Navier–Stokes–Maxwell equations. In the meantime, the time‐decay rates obtained by Zhang, Li, and Zhu [J. Differential Equations, 250(2011), 866‐891] for the linearized non‐isentropic Navier–Stokes–Poisson equations are improved. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
It is well known that for the classical Navier–Stokes problem the best one can obtain is some decays in time of power type. With this in mind, we consider in this work, the classical Navier–Stokes problem modified by introducing, in the momentum equation, the absorption term |u|σ?2 u, where σ > 1. For the obtained problem, we prove the existence of weak solutions for any dimension N ≥ 2 and its uniqueness for N = 2. Then we prove that, for zero body forces, the weak solutions extinct in a finite time if 1 < σ < 2 and exponentially decay in time if σ = 2. In the special case of a suitable force field which vanishes at some instant, we prove that the weak solutions extinct at the same instant provided 1 < σ < 2. We also prove that for non-zero body forces decaying at a power-time rate, the solutions decay at analogous power-time rates if σ > 2. Finally, we prove that for a general non-zero body force, the weak solutions exponentially decay in time for any σ > 1.  相似文献   

18.
1.IntroductionTherehavebeenconsiderableliteratuxeonthedecayofsolutionstothebestialvalueproblemsforsomenonlinearevolutionequations[3,4,6,7,161.Undercertainassumptions,LZdecayandLoodecayofsolutionstotheseproblemswereestablished.Thereadersinterestedcanfindsuchworksinourreferences.OurillterestisfocusedonthedecayofsolutionsoftheinitialvalueproblemsfornonlinearBenjamin--OnthBurgers(BOB)l"'19--21]andSchlodinger-Burgers(SB)equationwhereHisHilberttransform,definedbyWewallttoshowthattheLZandLoon…  相似文献   

19.
We study the Dirichlet problem for the stationary Oseen equations around a rotating body in an exterior domain. Our main results are the existence and uniqueness of weak and very weak solutions satisfying appropriate Lq‐estimates. The uniqueness of very weak solutions is shown by the method of cut‐off functions with an anisotropic decay. Then our existence result for very weak solutions is deduced by a duality argument from the existence and estimates of strong solutions. From this and interior regularity of very weak solutions, we finally establish the complete D1,r‐result for weak solutions of the Oseen equations around a rotating body in an exterior domain, where 4/3<r <4. Here, D1,r is the homogeneous Sobolev space.  相似文献   

20.
Consider the linear parabolic partial differential equation ${\mathcal {D}}_u\xi =0$ which arises by linearizing the heat flow on the loop space of a Riemannian manifold M. The solutions are vector fields along infinite cylinders u in M. For these solutions we establish regularity and a priori estimates. We show that for nondegenerate asymptotic boundary conditions the solutions decay exponentially in L2 in forward and backward time. In this case ${\mathcal {D}}_u$ viewed as linear operator from the parabolic Sobolev space ${\mathcal {W}}^{1,p}$ to Lp is Fredholm whenever p > 1. We close with an Lp estimate for products of first order terms which is a crucial ingredient in the sequel 13 to prove regularity and the implicit function theorem. The results of the present text are the base to construct in 13 an algebraic chain complex whose homology represents the homology of the loop space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号