首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
A crosslinked silicone‐containing macromolecular charring agent (CSi‐MCA) was synthesized via “one‐pot” process, and it was combined with ammonium polyphosphate (APP) to synergistically improve the flame retardancy of poly(l ‐lactic acid) (PLA). The chemical structure of synthesized CSi‐MCA was characterized by Fourier transform infrared spectroscopy and solid‐state 13C nuclear magnetic resonance. The thermal gravimetric analyzer indicated that the CSi‐MCA displayed good thermal stability and high residue via the catalytic crosslinking. Furthermore, the flame retardant effect of CSi‐MCA and APP as intumescent flame retardants in PLA system was investigated by limited oxygen index, UL94, and cone calorimeter test. When the content of CSi‐MCA was 5 wt% and APP was 10 wt% (CSi‐MCA/APP = 1/2), the limited oxygen index value of composites was 33.6 and UL94 classed a V‐0 rating. The peak heat release rate and total heat release of PLA composites containing both APP and CSi‐MCA decreased significantly in comparison with those with APP or CSi‐MCA alone. The flame retardancy mechanism was investigated via analyzing residual chars by scanning electron microscopy and X‐ray photoelectron spectroscopy as well as the possible chemical reaction between APP and CSi‐MCA by thermal gravimetric analyzer and Fourier transform infrared spectroscopy. The results showed that the enhanced flame retardancy was attributed mainly to synergistic effect of CSi‐MCA and APP, which could form a compact, continuous, and protective layer during combustion. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
The charring agent (CNCA‐DA) containing triazine and benzene rings was combined with ammonium polyphosphate (APP) to form intumescent flame retardant (IFR), and it was occupied to modify polylactide (PLA). The flame retardant properties and mechanism of flame retardant PLA composites were investigated by the limited oxygen index (LOI), vertical burning test (UL‐94), thermogravimetric analysis, microscale combustion calorimetry, scanning electron microscopy, laser Raman spectroscopy analysis and X‐ray photoelectron spectroscopy. The analysis from LOI and UL‐94 presented that the IFR was very effective in flame retardancy of PLA. When the weight ratio of APP to CNCA‐DA was 3:1, and the IFR loading was 30%, the IFR showed the best effect, and the LOI value reached 45.6%. It was found that when 20 wt% IFR was loaded, the flame retardancy of PLA/IFR still passed UL‐94 V‐0 rating, and its LOI value reached 32.8%. The microscale combustion calorimetry results showed that PLA/IFR had lower heat release rate, total heat release, and heat release capacity than other composites, and there was an obvious synergistic effect between APP and CNCA‐DA for PLA. IFR containing APP/CNCA‐DA had good thermal stability and char‐forming ability with the char residue 29.3% at 800°C under N2 atmosphere. Scanning electron microscopy observation further indicated that IFR could promote forming continuous and compact intumescent char layer. The laser Raman spectroscopy analysis and X‐ray photoelectron spectroscopy analysis results indicated that an appropriate graphitization degree of the residue char was formed, and more O and N were remained to form more cross‐linking structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Aluminum hypophosphite (AHP) was introduced into polylactide/intumescent flame retardant (PLA/IFR) systems by melt blending. The flame retardant and thermal properties of the PLA composites were investigated. The results suggest that a synergistic effect exists between IFR and AHP on the char formation and anti‐dripping behavior of PLA composites. The PLA/IFR composites containing 10 wt% IFR can pass the UL‐94 V‐0 rating but the test is accompanied by heavy melt dripping. For the PLA/AHP a UL‐94 V‐2 rating is obtained for the same loading of IFR. However, the composites containing 7 wt% IFR and 3 wt% AHP pass the UL‐94 V‐0 rating with modified dripping behavior. Moreover, the char from combustion of PLA/IFR is flexible but of poor quality. That for PLA/AHP is brittle with many cracks. In contrast, that for PLA/IFR/AHP is strong and compact. Thus it can resist the erosion due to heat and gas formation and protect the inside of the matrix. In addition, AHP causes the crosslinking among APP, which promotes the char formation and prevents the melt dripping. This is the main reason for the good flame retardant properties of PLA composites. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Intumescent flame retardant (IFR) has received the considerable attention ascribed to the inherent advantages including non‐halogen, low toxicity, low smoke release and environmentally friendly. In this work, a novel charring agent poly (piperazine phenylaminophosphamide) named as PPTA was successfully synthesized and characterized by Fourier transform infrared spectra (FTIR) and X‐ray photoelectron spectroscopy (XPS). Then, a series of flame‐retardant EP samples were prepared by blending with ammonium polyphosphate (APP) and PPTA. Combustion tests include oxygen Index (LOI), vertical Burning Test (UL‐94) and cone calorimeter testing,these test results showed that PPTA greatly enhances the flame retardancy of EP/APP. According to detailed results, EP containing 10 wt% APP had a LOI value of 30.2%,but had no enhancement on UL‐94 rating. However, after both 7.5 wt% APP and 2.5 wt% PPTA were added, EP‐7 passed UL‐94 V‐0 rating with a LOI value of 33.0%. Moreover, the peak heat release rate (PHRR) and peak of smoke product rate (PSPR) of EP‐7 were greatly decreased. Meanwhile, the flame‐retardant mechanism of EP‐7 was investigated by scanning electron microscopy (SEM), thermogravimetric analysis/infrared spectrometry (TG‐IR) and X‐ray photoelectron spectroscopy (XPS). The corresponding results presented PPTA significantly increased the density of char layer, resulting in the good flame retardancy.  相似文献   

5.
《先进技术聚合物》2018,29(9):2449-2456
In this work, a novel hyperbranched and phosphorus‐containing triazine derivative (HPCFA) is synthesized. HPCFA is used as charring‐foaming agent and combined with ammonium polyphosphate (APP) as intumescent flame retardant to flame retard polypropylene (PP). PP/HPCFA/APP composite can achieve limited oxygen index value of 31% and pass UL 94V‐0 rating by addition of 20 wt% HPCFA/APP (1/2, w/w). Besides, HPCFA is compared with another hyperbranched charring‐foaming agent (HCFA). HPCFA and HCFA have similar chemical structure, and their only difference is that HPCFA has phosphorus‐containing unit in the main chain compared with HCFA. HPCFA/APP system exhibits superior flame retardancy compared with HCFA/APP system. Char residue analysis demonstrates that HPCFA/APP system can form denser and more compact char layer in comparison with that of HCFA/APP system.  相似文献   

6.
A novel polyphosphazene/triazine bi‐group flame retardant in situ doping nano ZnO (A4‐d‐ZnO) was synthesized and applied in poly (lactic acid) (PLA). Fourier transform infrared (FTIR), solid state nuclear magnetic resonance (SSNMR), X‐ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM), and energy dispersive spectrometer (EDS) were used to confirm the chemical structure of A4‐d‐ZnO. The thermal stability and the flame‐retardant properties of the PLA composites were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), limiting oxygen index (LOI), vertical burning test (UL‐94), and micro combustion calorimeter (MCC) test. The results of XPS showed that A4‐d‐ZnO has been synthesized, and the doping ratio of ZnO was 7.2% in flame‐retardant A4‐d‐ZnO. TGA results revealed that A4‐d‐ZnO had good char forming ability (40 wt% at 600°C). The results of LOI, vertical burning test, and MCC showed that PLA/5%A4‐d‐ZnO composite acquired a higher LOI value (24%), higher UL94 rating, and lower pk‐HRR (501 kW/m2) comparing with that of pure PLA. It indicated that a small amount of flame‐retardant A4‐d‐ZnO could achieve great flame‐retardant performance in PLA composites. The catalytic chain scission effect of A4‐d‐ZnO could make PLA composites drip with flame and go out during combustion, which was the reason for the good flame‐retardant property. Moreover, after the addition of A4‐d‐ZnO, the impaired mechanical properties of PLA composites are minimal enough.  相似文献   

7.
In order to improve its water resistance and compatibility with polymer matrix, ammonium polyphosphate (APP) is modified with melamine‐trimesic acid (MEL‐TA) aggregates by supramolecular self‐assembly technology. Chemical structure and morphology of APP@MEL‐TA are investigated by Fourier transform infrared spectroscopy and scanning electron microscopy (SEM), respectively. Intumescent flame retardant system of APP@MEL‐TA and charring‐foaming agent is introduced into polypropylene (PP) matrix. The flammability and combustion behavior of PP composites are investigated by limiting oxygen index (LOI), UL‐94 vertical burning, and cone calorimetry tests. In terms of LOI values and cone combustion results, APP@MEL‐TA performs better than pristine APP. Char residue of PP composites is investigated by SEM and Raman spectra. Flame retardant mechanisms are proposed based on thermal decomposition, combustion results, and analysis on char residue.  相似文献   

8.
A novel hyperbranched polyamine charring agent (HPCA), a derivative of triazines, was synthesized and well characterized by 1H NMR and FTIR. HPCA and ammonium polyphosphate (APP) were added into polylactide (PLA) resin as an intumescent flame retardant (IFR) system to impart flame retardancy and dripping resistance to PLA. The flammability and thermal stability of IFR-PLA composites were investigated by limiting oxygen index (LOI), UL-94 vertical burning, cone calorimetry and thermogravometric analysis (TGA) tests. The results showed that the IFR system had both excellent flame retardant and anti-dripping abilities for PLA. The TGA curves suggested that HPCA has good ability of char formation and when combined with APP, would induce synergistic effect which could be clearly observed. This effect greatly promoted the char formation of IFR-PLA composites, hence improved the flame retardant property. Additionally, the structure and morphology of char residues were studied by XPS, FTIR and SEM.  相似文献   

9.
The flame retardancy of a novel intumescent flame‐retardant polypropylene (IFR‐PP) system, which was composed of a charring agent (CA), ammonium polyphosphate (APP), and polypropylene (PP), could be enhanced significantly by adding a small amount (1.0 wt%) of an organic montmorillonite (O‐MMT). The synergistic flame‐retardant effect was studied systematically. The thermal stability and combustion behavior of the flame‐retarded PP were also investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), vertical burning test (UL‐94), scanning electronic microscopy (SEM), and cone calorimeter test (CCT). TGA results demonstrated that the onset decomposition temperatures of IFR‐PP samples, with or without O‐MMT, were higher than that of neat PP. Compared with IFR‐PP, the LOI value of IFR‐PP containing 1.0 wt% O‐MMT was increased from 30.8 to 33.0, and the UL‐94 rating was also enhanced to V‐0 from V‐1 when the total loading of flame retardant was the same. The cone calorimeter results showed that the IFR‐PP with 1.0 wt% of O‐MMT had the lowest heat release rate (HRR), total heat release (THR), total smoke production (TSP), CO production (COP), CO2 production (CO2P), and mass loss (ML) of all the studied IFR‐PP samples, with or without O‐MMT. All these results indicated that O‐MMT had a significantly synergistic effect on the flame‐retardancy of IFR‐PP at a low content of O‐MMT. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
《先进技术聚合物》2018,29(2):785-794
A study on the influence of flame‐retardant types, poly(butylene succinate) (PBS) contents, and combination of flame retardant and PBS on the mechanical, thermal, morphological, and flame retardancy properties of polylactide (PLA) and PLA/PBS blends was investigated. Blending of PLA, PBS, and flame retardant was prepared by a twin screw extruder. Tricresyl phosphate (TCP) and montmorillonite (MMT) were used as a flame retardant, whereas PBS acted as a flexible material for enhancing the fire resistance and toughness of PLA, respectively. The results revealed that the introducing of TCP and MMT greatly improved the impact strength of the PLA. The impact toughness of PLA blends with 20 wt% of PBS increased to about 244% that of neat PLA. The addition of flame retardants markedly improved the limiting oxygen index of PLA from 18.0% to 30.1% and 24.3% for the blends containing TCP and MMT. The V‐0 rating in UL‐94 testing was achieved with PLA/TCP blend. Elongation at break, impact toughness, and thermal stability of PLA significantly increased with the increment of PBS concentration. The synergistic effect of flame retardant and PBS afforded the PLA blends with outstanding increase of impact resistance. Furthermore, the flame retardant of TCP in the system not only affected dripping behavior and total flame time of PLA/PBS blends but also improved limiting oxygen index values due to the forming of char layer and inhibiting of burning mechanism.  相似文献   

11.
Ammonium polyphosphate (APP) and inorganic fillers were applied for improving flame retardancy and mechanical performance of recycled poly(ethylene terephthalate) (RPET). RPET was compounded with 5–10 wt% of talc and glass bead using twin screw extruder then were injection molded with 2 wt% of APP. The effects of fillers contents and APP on properties and flame retardancy of RPET composites were investigated. The incorporation of talc and glass bead as well as the adding of APP significantly improved tensile and flexural modulus of RPET composites. Scanning electron microscope micrographs indicated good distribution of talc, while glass bead was agglomerated on the RPET matrix. Flame‐retardant property of neat RPET and the RPET composites revealed V‐2 of UL‐94 flammability rating. It can be noted that the composites were less dripping because of the synergistic effect of adding talc and glass bead with APP. From thermogravimetric analysis results, larger of residual char contents and lower values of the activation energy were considered for enhancing flame retardancy in the RPET composites. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The natural basalt fiber (BF) was incorporated into EVA composites with environmental‐friendly nickel alginate‐brucite based flame retardant (NiFR), to further improve the flame‐retardant effect and mechanical properties. The flame retardancy of EVA composites were characterized by LOI, UL 94, and cone test. With 55 wt% loading, 3BF/52NiFR had the highest LOI value of 31.9 vol.% in all fiber reinforced composites and pass UL 94V‐0 ratting. And comparing to 55B composite with untreated brucite, 3BF/52NiFR decreased peak of heat release rate by 47.8%, total heat release by 21.9%, and total smoke production by 35.5% and kept more residue 54.0% during cone test. Moreover, 3BF/52NiFR also enhanced the mechanical properties of composites by better compatibility with EVA matrix. BF/NiFR exert synergistic flame‐retardant effect major in promoting charring effect in condensed phase during combustion. The fire‐resisted and rigid BF into the char layer reinforced the intensity of protective barrier which prolonged the residence time of pyrolysis carbonaceous groups degraded from EVA matrix, resulting in less heat and smoke release.  相似文献   

13.
The effects of β‐cyclodextrin containing silicone oligomer(CDS), as a synergistic agent, on the flame retardancy and mechanical properties of intumescent flame retardant polypropylene composites were studied by adding different amounts of CDS in intumescent flame retardants. The limiting oxygen index (LOI), UL‐94 test, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were utilized to evaluate the synergistic effects of CDS in the composites. It was found that after a little amount of CDS partially replaced a charring‐foaming agent (CFA) in IFR, LOI values of the composites were enhanced and they obtained a UL‐94 V‐0 rating. IFR system containing 6.25wt% CDS presented the best flame retardancy in PP. The experimental results obtained from LOI and UL‐94, TGA, SEM, and mechanical properties indicated that the combination of CDS and CFA presents synergistic effects in flame retardancy, char formation, and mechanical properties of the composites. This is probably due to different structures of polyhydroxyl macromolecules (CDS and CFA), the existence of dimethyl silicone group in CDS, and the toughness of epoxy silicon chain in CDS. SEM results proved that the interfacial compatibility between IFR and PP was improved by CDS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The flame‐retardant polylactic acid (PLA) has been prepared via mixing the flame retardant TGIC‐DOPO derived from phosphaphenanthrene and triazine groups into matrix. The flame retardancy of TGIC‐DOPO/PLA composites was characterized using the limiting oxygen index (LOI), vertical burning test (UL94), and cone calorimeter test. Results reveal that the 10%TGIC‐DOPO/PLA composite obtained 26.1% of LOI and passed UL94 V‐0 rating. The flame‐retardant mechanism of PLA composites was characterized via thermogravimetric analysis (TGA), pyrolysis gas chromatography/mass spectroscopy, and TGA‐Fourier transform infrared. It discloses that TGIC‐DOPO promoted PLA decomposing and dripping early, and it also released the fragments with quenching and dilution effects. These actions of TGIC‐DOPO contribute to reducing the burning intensity and extinguishing the fire on droplets, thus imposing better flame retardancy to PLA. When TGIC‐DOPO was partly replaced by melamine cyanuric with dilution effect and hexa‐phenoxy‐cyclotriphosphazene with quenching effect in composites respectively, the results confirm that TGIC‐DOPO utilize well‐combination in dilution effect and quenching effect to flame retard PLA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
In order to explore the structure mode of intumescent flame retardants (IFRs) with higher efficiency, IFR particles with joint‐aggregation structure (@IFR) were obtained through the treatment of ammonium polyphosphate (APP) and a charring agent (PT‐Cluster) in their aqueous solution. Then, the joint‐aggregation IFR effect was researched using its application in polypropylene. In case of 20 wt% IFR loading, the limiting oxygen index (LOI) value of @IFR/PP was 1.1% higher than that of 15APP/5PT‐Cluster/PP mixture, and a 1.6 mm‐thick @IFR/PP composite passed the UL 94 V‐2 rating test, while 15APP/5PT‐Cluster/PP demonstrated no flame‐retardant rating in UL 94 vertical burning tests. In a cone calorimeter test, @IFR also had a better inhibition effect on heat release. The average heat release rate (av‐HRR) value during 0 to 120 seconds of @IFR/PP was only 41 kW m?2, which was 33.9% lower than that of the 15APP/5PT‐Cluster/PP. Furthermore, the peak heat release rate (pk‐HRR) of @IFR/PP was 20.5% lower than that of 15APP/5PT‐Cluster/PP, and the time to pk‐HRR of @IFR/PP was 710 seconds, while that of 15APP/5PT‐Cluster/PP was 580 seconds. The better inhibition effect on HRR and the delay of time to pk‐HRR were caused by the joint‐aggregated structure of @IFR, which can rapidly react to form stable and efficient char layers. This kind of join‐aggregation IFR effect has great significance in suppressing the spread of fire in reality. In addition, @IFR also increased the mechanical properties of PP composites slightly compared with the APP/PT‐Cluster mixture.  相似文献   

16.
Because of good thermal stability, nonflammability and rich structural designability, ionic liquids (ILs) have been used as flame retardants for poly(lactic acid) (PLA). However, as a small molecule, IL has the disadvantages of poor thermal stability and water resistance, and so on. In this paper, an imidazole‐type poly(ionic liquid) (PIL) containing a phosphate anion was synthesized using 1‐vinylimidazole, triethyl phosphate, and 1,2‐divinylbenzene and marked as PDVE[DEP]. The PDVE[DEP] was used to improve the flame retardancy of PLA. The flame retardancy and thermal degradation behaviors of PLA/PDVE[DEP] composites were investigated by the limited oxygen index (LOI), UL‐94 vertical burning, cone calorimetry, and thermal gravity analysis, and so on. The results showed that only 1.0 wt% PDVE[DEP] allows PLA to achieve the UL‐94 V0 rating and obtain LOI value 25.6 vol%. The PDVE[DEP] improve the flame retardancy of PLA by melting‐away mode. In addition, it catalyzes the transesterification of PLA and changes the degradation products.  相似文献   

17.
A hyperbranched polyamine was prepared using an A2 + B3 approach. It acted as a hyperbranched charring and foaming agent (HCFA) in combination with ammonium polyphosphate (APP) to form a new intumescent flame retardant (IFR) system for polyamide 6 (PA6). Effect of HCFA on flame retardant and thermal degradation properties of IFR‐PA6 was investigated by limiting oxygen index (LOI), UL‐94 vertical burning, cone calorimeter, and thermogravimetric analysis (TGA) tests. The IFR system presented the most effective flame retardancy in PA6 when the weight ratio of APP to HCFA was 2:1. The LOI value of IFR‐PA6 could reach 36.5 with V‐0 rating when the IFR loading was 30 wt%. Even if the loading decreased to 25 wt%, IFR‐PA6 could still maintain V‐0 rating with an LOI value of 31. TGA curves indicated that APP would interact with both PA6 and HCFA in PA6/APP/HCFA composite under heating. The interaction between APP and HCFA improved the char formation ability of IFR system and then much more char was formed for PA6/APP/HCFA composite than for PA6/APP. Therefore, better flame retardancy was achieved. Moreover, the structure and morphology of char residue were studied by Fourier transform infrared (FTIR), X‐ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The results indicated that compact and foaming char layer containing P‐O‐C structure was formed for PA6/APP/HCFA system during combustion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The flame retardancy mechanisms of poly(1,4‐butylene terephthalate) (PBT) containing microencapsulated ammonium polyphosphate (MAPP) and melamine cyanurate (MC) were investigated via pyrolysis analysis (thermogravimetric analysis (TGA), real‐time Fourier transform infrared (FTIR), TG‐IR), cone calorimeter test, combustion tests (limited oxygen index (LOI), UL‐94), and residue analysis (scanning electron microscopy (SEM)). A loading of 20 wt% MC to PBT gave the PBT composites an LOI of 26%, V‐2 classification in UL‐94 test and a high peak heat release rate (HRR) in cone calorimeter test. Adding APP to PBT/MC composites did not improve their flame retardancy. In comparison with the addition of ammonium polyphosphate (APP) to PBT, MAPP with silica gel shell and MAPP with polyurethane shell both promoted the intumescent char‐forming and improved the flame retardancy of PBT through different mechanisms in the presence of MC. These two halogen‐free PBT composites with V‐0 classification according to UL‐94 test were obtained; their LOI were 32 and 33%, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
In this work, a novel multifunctional organic‐inorganic hybrid flame agent (AM‐MEL) was prepared from magnesium hydroxide nanosheets decorated by nitrilotrimethylene triphosphonic acid and melamine. Then, an intrinsic flame‐retardant epoxy resin (EP) was prepared by covalently incorporating AM‐MEL nanoparticles. Meanwhile, ammonium polyphosphate (APP) was added into EP to form an intumescent flame retardant system with AM‐MEL. The chemical structure of AM‐MEL was characterized by Fourier transform infrared spectra, X‐ray photoelectron spectroscopy, and scanning electron microscopy. With the incorporation of 5 wt% AM‐MEL and 15 wt% APP, EP/AM‐MEL/APP could reach a limiting oxygen index value of 32.0% and achieve UL‐94 V‐0 rating, along with 88.0%, 70.0%, 81.5%, and 87.3% decrease in the peak heat release rate, total heat release, total smoke production, and the peak CO production rate, respectively, with respect to that of pure EP. The mechanisms of its flame retardant and smoke suppression were investigated.  相似文献   

20.
Poly (diallyldimethylammonium chloride) (PDDA) and ammonium polyphosphate (APP) deionized chloride ions and ammonium ions by ionizing in aqueous solution respectively, then combined to form poly (diallyldimethylammonium) and polyphosphate (PAPP) polyelectrolyte complexes as an all‐in‐one flame retardant for polypropylene and its composites were characterized by Fourier transform infrared (FTIR) spectroscopy and X‐ray photoelectron spectroscopy. One flame retardant system composed of PAPP and PP, the other flame retardant system composed of PAPP, Polyamide‐6 (PA6) and PP were tested by limiting oxygen index (LOI), UL‐94, cone calorimeter tests and thermogravimetric analysis (TGA) and compared with pure PP. The results showed that the LOI value of PP/PAPP composite can reach 27.5%, and UL‐94 V‐2 rating can be reached at 25 wt% PAPP loading. Meanwhile the cone calorimetry results displayed that the peak heat release rate (PHRR) and total heat release (THR) were reduced up to 69.3% and 22.5%, respectively, compared with those of pure PP. After adding 5 wt% PA6, the carbon source missing due to the early PAPP decomposition can be made up, and PHRR and THR can be further reduced slightly. The flame retardant mechanism of PAPP was studied by FTIR spectroscopy and X‐ray photoelectron spectroscopy. Six‐membered ring of C─N containing conjugate double bonds, cross‐linked phosphate structure formed stable, intumescent, compact char layer which greatly improved the flame retardancy of PP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号