首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
Abstract

Although strawberry tree (Arbutus unedo L.) leaves have long been used as a herbal remedy, insufficient information is available on their nephrotoxicity. We assessed the safety of strawberry tree water leaf extract and its key component arbutin, administered per os to Lewis rats of both genders at 200?mg/kg b.w./day for 14 and 28 days. The effects of the tested compounds on DNA integrity in renal cells was evaluated using alkaline comet assay, while kidney function was studied using serum creatinine and urea levels. Strawberry tree water leaf extract showed high biocompatibility with kidney tissue. It did not impair DNA integrity of renal cells and kidney function, either in male or female rats. However, exposure to single arbutin affected the levels of primary DNA damage in renal cells which could be related to metabolic conversion of arbutin into hydroquinone, whose nephrotoxicity has previously been proven.  相似文献   

2.
A method combining the techniques of liquid – solid disk extraction (LSDE) and supercritical fluid elution (SFE) has been developed for the phenols regulated by the Clean Water Act. LSDE uses a disk or membrane made of polytetrafluoroethylene (PTFE) fibrils impregnated with small particles, e.g. styrene divinylbenzene (SDB) resin, to extract phenols from water. After disk extraction the retained analytes are eluted from the disk using SFE. SFE is used as an alternative to liquid solvent elution with an organic solvent. Analytes are separated, identified, and quantified using gas chromatography – ion trap detector mass spectrometry (GC-ITDMS). The method is capable of sub parts per billion detection limits, and precision of 5–28% RSD. Evaluation of various disks or membranes, such as C18-silica disks, SDB disks, and ion exchange membranes, has also been performed for the extraction of phenols from water. The results obtained from the in-situ aqueous acetylation of phenols and extraction of their acetates are quantitative. The utilization of LSDE and SFE techniques has proven to be a more effective approach than liquid – liquid extraction in minimizing air pollution and solvent waste.  相似文献   

3.
In pharmaceutical industry, finding promising ways to enhance the solubility of disparate types of drugs is an important challenge for the orally administered drug delivery system. Disparate techniques based on drug characteristics, nature of dosage form and properties of excipients have recently been under extensive evaluation all over the world to improve the solubility of poorly water-soluble drugs. Among them, supercritical fluid carbon dioxide (SC-CO2) has received paramount attentions due to having considerable advantages like cost-effectiveness and low flammability. Lenalidomide belongs is an orally administered anti-cancer agent, which has recently received indication for the treatment of adult patients with different bone marrow-related malignancies such as multiple myeloma, mantle cell lymphoma and follicular lymphoma. Predicting the optimized value of Lenalidomide inside the SC-CO2 in a wide range of pressure and temperature via developing mathematical models based on artificial intelligence (AI) is the main objective of this paper. In this study, three different machine learning based models are selected to predict and optimized the drug solubility. The available data includes 28 rows of data with two inputs including temperature and pressure and two outputs including density and solubility. Selected models are Kernel Ridge Regression (KRR), least angle regression (LAR), and Multilayer Perceptron (MLP). After optimizing models and comparing the results, the MLP was selected as the primary model of this research. The models illustrated R-squared scores of 0.999 and 0.994 for density and solubility. The maximum errors are also 2.92 and 6.44 × 10-2 for these outputs, which shows the accuracy and significant generality of the model.  相似文献   

4.
Evodiamine and rutaecarpine have been intensively studied due to their pharmacological actions and clinical applications. In this report, supercritical fluid was used to extract evodiamine and rutaecarpine from the unripe fruit of Evodia rutaecarpa. Response surface methodology using Box-Behnken experimental design was utilized to optimize parameters for supercritical carbon dioxide extraction with methanol as co-solvent. The effect of various values of dynamic extraction time (30-90min), temperature (50-70°C) and pressure (200-400bar) on extraction yields of the two compounds was evaluated. Determinations of the extracts were performed by high-performance liquid chromatography. The experimental data obtained were fitted to second-order polynomial equations and analyzed by analysis of variance. The highest yields predicted were 1.217mg/g for evodiamine and 0.969mg/g for rutaecarpine at the optimal values (time 78min, temperature 62°C, pressure 280bar and co-solvent flow rate 0.4mL/min), based on the selected range of experimental conditions.  相似文献   

5.
《Natural product research》2012,26(5):412-417
Supercritical carbon dioxide extraction allowed to obtain the volatile oil of different aerial parts of Ridolfia segetum (L.) Moris. Extraction conditions were as follows: pressure, 90 bar; temperature, 50°C and carbon dioxide flow, Φ?=?1.0?kg?h?1. Waxes were entrapped in the first separator set at 90?bar and ?10°C. The oil was recovered in the second separator working at 15?bar and 10°C. The main components of the flower oil were α-phellandrene (19.4%), terpinolene (20.5%), piperitenone oxide (11.6%), β-phellandrene (8.2%), (Z)-β-ocimene (7.8%), myristicin (7.5%) and p-cymene (4.4%). The comparison with the hydrodistilled (HD) oil reveal that the significative difference was the content of sesquiterpenes which are higher in the supercritical fluid extraction (SFE) products. Collection of samples at different extraction times during supercritical extraction, allowed to monitor the change of the oil composition. Lighter compounds, as hydrocarbon monoterpenes, were extracted in shorter times than the heavier hydrocarbon and oxygenated sesquiterpenes. The oil from the steams was characterized by a high content of α-phellandrene (12.9%), terpinolene (11.6%), myristicin (11.0%), p-cymene (9.9%), β-phellandrene (8.2%) and (Z)-β-ocimene (6.0%) while the main components of the fruits were found to be myristicin (70.8%), piperitenone oxide (19.9%) and dill apiole (4.2%).  相似文献   

6.
Huang L  Kawi S  Poh C  Hidajat K  Ng SC 《Talanta》2005,66(4):943-951
Extraction of cationic surfactant templates from MCM-41, MCM-48, SBA-1 and SBA-3 has been conducted using CH3OH-modified CO2 supercritical fluid. The supercritical fluid extraction (SFE) has been integrated with thermogravimetry (TG), X-ray diffraction (XRD) and N2 adsorption-desorption to evaluate extraction efficiency and structural stability of mesoporous materials. Experiments of optimization indicate that the conditions of 90 bar, 85 °C, CH3OH/CO2 = 0.1/1.0 ml/min and 3 h are most suitable for the SFE of cationic templates. 76-95% of the cationic templates can be extracted from the mesoporous materials. XRD and N2 adsorption-desorption studies illustrate that SFE possesses some advantages over calcination in maintaining mesoporous uniformity and structural stability when used to remove templates. The impact of curing on mesoporous structure is also dealt with.  相似文献   

7.
8.
超临界二氧化碳流体萃取中药苦参的生物总碱   总被引:8,自引:0,他引:8  
超临界CO2流体萃取(CO2 SupercriticalFluidExtraction,SFE CO2)技术是一种新型分离提取技术,其选择分离效果好,提取率高,产物没有有机溶剂残留,有利于热敏性物质和易氧化物质的萃取[1]。苦参为豆科植物,是传统的清热燥湿类中药,其有效成分主要为生物碱。苦参生物碱具有抗肿瘤、平喘、升白、抗菌、抗病毒、抗原虫等多种功能[2]。由于生物碱在植物中多数以盐的形式存在,若直接用极性较弱的溶剂提取往往提取不完全,故在提取前需碱化,使之成为游离碱[3]。本实验用氨水作碱化剂,选用无水甲醇为夹带剂,…  相似文献   

9.
Supercritical CO2 extraction (SCE) technology was used to extract a volatile oil, rich in beta-asarone, from Acori graminei rhizoma (AGR). The effect of different extraction and fractionation parameters on oil yield and selectivity towards beta-asarone was investigated by SCE using commercial AGR samples. The optimal conditions (P(e)/T(e) = 10 MPa/45 degrees C; P(f1)/T(f1) = 8 MPa/-10 degrees C; P(f2)/T(f2 )= 2 MPa/10 degrees C) gave a good oil yield and selectivity for beta-asarone. The extracts were also analyzed by GC-MS and compared with the volatile oil obtained by hydrodistillation, in which 39 main constituents including beta-asarone were found. Different cultivated AGR samples obtained from three areas of China were evaluated in terms of their volatile oil compositions obtained by extraction of commercial AGR samples under optimal conditions; the extract of the Guangdong (GD) sample showed a high beta-asarone content.  相似文献   

10.
Summary An exhaustive study of the behaviour in supercritical fluid extraction of eight PAHs in real samples of soil compared to spiked samples in silica has been carried out. The presence of a modifier is mandatory for quantitative extraction of the native analytes, but is unnecessary in spiked samples. The type and volume of modifier to be added and the sample-modifier contact time were optimized and the influence of the particle size assessed.  相似文献   

11.
An automated supercritical fluid extraction system was evaluated with polynuclear aromatic hydrocarbons and phenols to demonstrate extraction efficiency, collection efficiency, and sample cross contamination. Results showed that 75/25 glass beads/octadecyl silica provided the highest collection efficiency for these classes of compounds. Also, the automated SFE system was used to study the effect of different percentages of water (w/w) in soil on extraction efficiency of fortified PAH and phenols at different temperatures and pressures. Results showed that the presence of (available) water in soil (>10%) does, increase extraction efficiency of higher molecular weight PAH at higher temperature. Also it was demonstrated that temperature rather than pressure had a marked effect on extraction efficiency. The extraction efficiency of phenols from soil which contained 5% of water, using pure supercritical CO2, was higher than those obtained from dry soil or soil containing 1 % water. Extraction of phenols from soil did not show a dependence on pressure or temperature.  相似文献   

12.
Supercritical fluid extraction (SFE) coupled with high‐speed counter‐current chromatography (HSCCC) was successfully used for the extraction and online isolation of the unstable compounds from Rosa damascene in a single extraction and separation operation in two stages. The solvent systems of SFE/HSCCC were optimized with the help of multiexponential function model. At the first stage, the upper phase of the solvent system of n‐butanol–tert‐butyl methyl ether–acetonitrile–0.1% aqueous TFA (1.7:1.0:0.8:4.0, v/v/v/v) was used as both the SFE entrainer and the HSCCC stationary phase, and the target compounds were eluted with the corresponding lower phase to separate the hydrophobic compounds. At the second stage, the upper phase of the solvent system of n‐hexane–ethyl acetate–methanol–water (3.2:1.0:2.8:2.6, v/v/v/v) was used as both the SFE entrainer and the HSCCC stationary phase, followed by elution with the corresponding lower phase to separate the moderate hydrophobic compounds. Six compounds including formononetin, delphinidin, cyaniding, 5,6,4′‐trihydroxy‐7,8‐dimethoxy flavone, 5,3′‐dihydroxy‐7,8‐dimethoxy flavone, and 5‐hydroxy‐6,7,8,3′,4′‐pentamethoxy flavone were successfully separated in one extraction–separation operation within 300 min. The targeted compounds were identified by MS and NMR spectroscopy. This research has opened up great prospects for industrial application of SFE/HSCCC to the extraction and separation of unstable compounds.  相似文献   

13.
A selective and sensitive method was developed based on dispersive micro‐solid‐phase extraction for the extraction of hydroquinone, resorcinol, pyrocatechol and phenol from water samples prior to high‐performance liquid chromatography with UV detection. SiO2, SiO2@MPTES, and SiO2@MPTES@Au nanoparticles (MPTES = 3‐mercaptopropyltriethoxysilane) were synthesized and characterized by scanning electronic microscopy, thermogravimetric analysis, differential thermogravimetric analysis, and infrared spectroscopy. Variables such as the amount of sorbent (mg), pH and ionic strength of sample the solution, the volume of eluent solvent (μL), vortex and ultrasonic times (min) were investigated by Plackett–Burman design. The significant variables optimized by a Box–Behnken design were combined by a desirability function. Under optimized conditions, the calibration graphs of phenol and dihydroxybenzenes were linear in a concentration range of 1–500 μg/L, and with correlation coefficients more than 0.995. The limits of detection for hydroquinone, resorcinol, pyrocatechol, and phenol were 0.54, 0.58, 0.46, and 1.24 μg/L, and the limits of quantification were 1.81, 1.93, 1.54, and 4.23 μg/L, respectively. This procedure was successfully employed to determine target analytes in spiked water samples; the relative mean recoveries ranged from 93.5 to 98.9%.  相似文献   

14.
Supercritical fluid extraction (SFE) was used to extract homoisoflavonoids from Ophiopogon japonicus (Thunb.) Ker‐Gawler. The optimization of parameters was carried out using an orthogonal test L9 (3)4 including pressure, temperature, dynamic extraction time and the amount of modifier. The process was then scaled up by 100 times with a preparative SFE system under the optimized conditions of 25 MPa, 55°C, 4.0 h and 25% methanol as a modifier. Then crude extracts were separated and purified by high‐speed counter‐current chromatography (HSCCC) with a two‐phase solvent system composed of n‐hexane/ethyl acetate/methanol/ACN/water (1.8:1.0:1.0:1.2:1.0 v/v). There three homoisoflavonoidal compounds including methylophiopogonanone A 6‐aldehydo‐isoophiopogonone A, and 6‐formyl‐isoophiopogonanone A, were successfully isolated and purified in one step. The collected fractions were analyzed by HPLC. In each operation, 140 mg crude extracts was separated and yielded 15.3 mg of methylophiopogonanone A (96.9% purity), 4.1 mg of 6‐aldehydo‐isoophiopogonone A (98.3% purity) and 13.5 mg of 6‐formyl‐isoophiopogonanone A (97.3% purity) respectively. The chemical structure of the three homoisoflavonoids are identified by means of ESI‐MS and NMR analysis.  相似文献   

15.
Supercritical fluid extraction (SFE) of aqueous solutions is often limited by poor mass transport. The performance of a new gas-liquid entraining device was investigated to improve mass transport and thereby increase extraction efficiency. As a test system, iron(III) was extracted from water with a β-diketone chelating agent (HL) and supercritical fluid carbon dioxide. Metal β-diketonate complexes with sufficient solubility in supercritical fluid CO2 are often poorly extracted from aqueous solutions due to limited mass transport between the water-soluble metal ion and the CO2-soluble chelating agent. The new entraining device maximizes contact between the ligand-rich CO2 phase and the metal ion-rich aqueous phase. Iron(III) was extracted from water with the chelating agent 2,2,7-trimethyl-3,5-octanedione (H(tod)) and supercritical fluid CO2 at 60 °C and 20.8 MPa. With entrainment, 79% of the iron was removed from the aqueous phase. This represents a three-fold increase in iron extraction efficiency over that of a static system.  相似文献   

16.
We report the synthesis, characterization, and application of [Zn(1,4‐benzenedicarboxylate)(H2O)2]n , Zn(1,4‐benzenedicarboxylate)0.99(NH2‐1,4‐benzenedicarboxylate)0.01(H2O)2]n , [Zn(1,4‐benzenedicarboxylate)0.95(NH2‐1,4‐benzenedicarboxylate)0.05(H2O)2]n , and [Zn(1,4‐benzenedicarboxylate)0.9(NH2‐1,4‐benzenedicarboxylate)0.1(H2O)2]n as sorbents for the extraction of multiclass pesticides from coconut palm. Liquid chromatography with ultraviolet diode array detection was used as the analysis technique, and the experiments were performed at one fortification level (0.1 μg/g). The recoveries were 47–67, 51–70, 58–72, and 64–76% for [Zn(1,4‐benzenedicarboxylate)(H2O)2]n , Zn(1,4‐benzenedicarboxylate)0.99(NH2‐1,4‐benzenedicarboxylate)0.01(H2O)2]n , [Zn(1,4‐benzenedicarboxylate)0.95(NH2‐1,4‐benzenedicarboxylate)0.05(H2O)2]n , and [Zn(1,4‐benzenelate)0.95(NH2‐1,4‐benzenedicarboxylate)0.05(H2O)2]n , and [Zn(1,4‐benzenedicarboxylate)0.9(NH2‐1,4‐benzenedicarboxylate)0.1(H2O)2]n , respectively, with relative standard deviation ranging from 1 to 7% (n = 3). Detection and quantification limits were 0.01–0.05 and 0.05–0.2 μg/g, respectively, for the different pesticides studied. The method developed was linear over the range tested (0.01–10.0 μg/g) with r 2 > 0.9991. A direct comparison of [Zn(1,4‐benzenedicarboxylate)0.9(NH2‐1,4‐benzenedicarboxylate)0.1(H2O)2]n with the commercially available neutral alumina showed that [Zn(1,4‐benzenedicarboxylate)0.9(NH2‐1,4‐benzenedicarboxylate)0.1(H2O)2]n was a similar extracting phase for the pesticides investigated.  相似文献   

17.
We have synthesized ruthenium(II)– and osmium(II)–polypyridyl complexes ([M(bpy)2 L ]2+, in which M=OsII or RuII, bpy=2,2′‐bipyridyl, and L =4‐(2,2′‐bipyridinyl‐4‐yl)benzene‐1,2‐diol) and studied the interfacial electron‐transfer process on a TiO2 nanoparticle surface using femtosecond transient‐absorption spectroscopy. Ruthenium(II)‐ and osmium(II)‐based dyes have a similar molecular structure; nevertheless, we have observed quite different interfacial electron‐transfer dynamics (both forward and backward). In the case of the RuII/TiO2 system, single‐exponential electron injection takes place from photoexcited nonthermalized metal‐to‐ligand charge transfer (MLCT) states. However, in the case of the OsII/TiO2 system, electron injection takes place biexponentially from both nonthermalized and thermalized MLCT states (mainly 3MLCT states). Larger spin–orbit coupling for the heavier transition‐metal osmium, relative to that of ruthenium, accounts for the more efficient population of the 3MLCT states in the OsII‐based dye during the electron‐injection process that yields biexponential dynamics. Our results tend to suggest that appropriately designed OsII–polypyridyl dye can be a better sensitizer molecule relative to its RuII analogue not only due to much broader absorption in the visible region of the solar‐emission spectrum, but also on account of slower charge recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号