首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article is concerned with a generalization of a functional differential equation known as the pantograph equation which contains a linear functional argument. In this article, we introduce a collocation method based on the Bessel polynomials for the approximate solution of the pantograph equations. The method is illustrated by studying the initial value problems. The results obtained are compared by the known results. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

2.
A numerical method based on the Taylor polynomials is introduced in this article for the approximate solution of the pantograph equations with constant and variable coefficients. Some numerical examples, which consist of the initial conditions, are given to show the properties of the method. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27:1628–1638, 2011  相似文献   

3.
In this paper, a collocation method is presented to find the approximate solution of high‐order linear complex differential equations in rectangular domain. By using collocation points defined in a rectangular domain and the Bessel polynomials, this method transforms the linear complex differential equations into a matrix equation. The matrix equation corresponds to a system of linear equations with the unknown Bessel coefficients. The proposed method gives the analytic solution when the exact solutions are polynomials. Numerical examples are included to demonstrate the validity and applicability of the technique and the comparisons are made with existing results. The results show the efficiency and accuracy of the present work. All of the numerical computations have been performed on a computer using a program written in MATLAB v7.6.0 (R2008a). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
In this article, a collocation method is developed to find an approximate solution of higher order linear complex differential equations with variable coefficients in rectangular domains. This method is essentially based on the matrix representations of the truncated Taylor series of the expressions in equation and their derivates, which consist of collocation points defined in the given domain. Some numerical examples with initial and boundary conditions are given to show the properties of the method. All results were computed using a program written in scientific WorkPlace v5.5 and Maple v12. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

5.
This paper is concerned with the numerical solution of delay integro‐differential equations. The main purpose of this work is to provide a new numerical approach based on the use of continuous collocation Taylor polynomials for the numerical solution of delay integro‐differential equations. It is shown that this method is convergent. Numerical illustrations confirm our theoretical analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper we propose a computational scheme of the general projection method for the solution of singular integrodifferential equations in the theory of stream lines and thermal conductivity. We theoretically substantiate this scheme from the standpoint of the theory of approximate methods of functional analysis. We consider particular cases of the general projection method, namely, the method of moments and the collocation method.  相似文献   

7.

In this paper, we study polynomial spline collocation methods applied to a particular class of integral-algebraic equations of Volterra type. We analyse mixed systems of second and first kind integral equations. Global convergence and local superconvergence results are established.

  相似文献   


8.
An approximate method for solving higher‐order linear complex differential equations in elliptic domains is proposed. The approach is based on a Taylor collocation method, which consists of the matrix represantation of expressions in the differential equation and the collocation points defined in an elliptic domain. Illustrative examples are included to demonstrate the validity and applicability of the technique. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

9.
In this paper we consider the general linear boundary value problem for ill-posed integrodifferential equations of an arbitrarily fixed finite order. We theoretically substantiate one version of the general spline-projection method. In particular, the obtained general results allow us to deduce the convergence of the spline methods of collocation and subdomains.  相似文献   

10.
In this paper, we investigate the numerical solution of the three-dimensional (3D) nonlinear tempered fractional integrodifferential equation which is subject to the initial and boundary conditions. The backward Euler (BE) method in association with the first-order convolution quadrature rule is employed to discretize this equation for time, and the Galerkin finite element method is applied for space, which is combined with an alternating direction implicit (ADI) algorithm, in order to reduce the computational cost for solving the three-dimensional nonlocal problem. Then a fully discrete BE ADI Galerkin finite element scheme can be obtained by linearizing the non-linear term. Thereafter we prove a positive-type lemma, from which the stability and convergence of the proposed numerical scheme are derived based on the energy method. Numerical experiments are performed to verify the effectiveness of the proposed approach.  相似文献   

11.
This article is devoted to investigating the approximate solutions to a class of boundary integral equations over a closed, bounded and smooth surface found via the collocation method. This article provides sufficient conditions for the convergence of this method in the space of continuous functions.  相似文献   

12.
The aim of this article is to present an efficient numerical procedure for solving nonlinear integro‐differential equations. Our method depends mainly on a Taylor expansion approach. This method transforms the integro‐differential equation and the given conditions into the matrix equation which corresponds to a system of nonlinear algebraic equations with unkown Taylor coefficients. The reliability and efficiency of the proposed scheme are demonstrated by some numerical experiments and performed on the computer program written in Maple10. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

13.
14.
In this paper, a finite element collocation approach using cubic B-splines is employed for the numerical solution of a generalized form of the nonlinear Klein-Gordon equation. The efficiency of the method is tested on a number of examples that represent special cases of the extended equation including the sine-Gordon equation. The numerical results are compared with existing numerical and analytic solutions and the outcomes confirm that the scheme yields accurate and reliable results even when few nodes are used at the time levels.  相似文献   

15.
This paper is concerned with the approximate solution of functional differential equations having the form: x′(t) = αx(t) + βx(t - 1) + γx(t + 1). We search for a solution x, defined for t ∈ [−1, k], k ∈ ℕ, which takes given values on intervals [−1, 0] and (k-1, k]. We introduce and analyse some new computational methods for the solution of this problem. Numerical results are presented and compared with the results obtained by other methods.   相似文献   

16.
In this study, a matrix method is developed to solve approximately the most general higher order linear Fredholm integro‐differential‐difference equations with variable coefficients under the mixed conditions in terms of Taylor polynomials. This technique reduces the problem into the linear algebraic system. The method is valid for any combination of differential, difference and integral equations. An initial value problem and a boundary value problem are also presented to illustrate the accuracy and efficiency of the method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents a new multistep collocation method for nth order differential equations. The interval of interest is first divided into N subintervals. By determining interval conditions in Taylor interpolation in each subinterval, Taylor polynomials are calculated with different step lengths. Then the obtained solutions in each subinterval are used as initial conditions in the next step. Optimal error is assessed using Peano lemma, which shows that the errors decay by decreasing the step length. In particular, for fixed step length h, the error is of O(m?m), where m is the number of collocation points in each subinterval. Meanwhile, for fixed m, the error is of O(hm). Numerical examples demonstrate the validity and high accuracy of the proposed method even for stiff problems.  相似文献   

18.
In this study, a Hermite matrix method is presented to solve high‐order linear Fredholm integro‐differential equations with variable coefficients under the mixed conditions in terms of the Hermite polynomials. The proposed method converts the equation and its conditions to matrix equations, which correspond to a system of linear algebraic equations with unknown Hermite coefficients, by means of collocation points on a finite interval. Then, by solving the matrix equation, the Hermite coefficients and the polynomial approach are obtained. Also, examples that illustrate the pertinent features of the method are presented; the accuracy of the solutions and the error analysis are performed. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1707–1721, 2011  相似文献   

19.
Numerical solution of mixed linear integro-differential-difference equation is presented using Chebyshev collocation method. The aim of this article is to present an efficient numerical procedure for solving mixed linear integro-differential-difference equations. Our method depends mainly on a Chebyshev expansion approach. This method transforms mixed linear integro-differential-difference equations and the given conditions into matrix equation which corresponds to a system of linear algebraic equation. The reliability and efficiency of the proposed scheme are demonstrated by some numerical experiments and performed on the computer algebraic system Maple10.  相似文献   

20.
We have developed a new numerical method based on Haar wavelet (HW) in this article for the numerical solution (NS) of one- and two-dimensional hyperbolic Telegraph equations (HTEs). The proposed technique is utilized for one- and two-dimensional linear and nonlinear problems, which shows its advantage over other existing numerical methods. In this technique, we approximated both space and temporal derivatives by the truncated Haar series. The algorithm of the method is simple and we can implement easily in any other programming language. The technique is tested on some linear and nonlinear examples from literature. The maximum absolute errors (MAEs), root mean square errors (RMSEs), and computational convergence rate are calculated for different number of collocation points (CPs) and also some 3D graphs are also drawn. The results show that the proposed technique is simply applicable and accurate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号