首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cyclic alkyl(amino)carbene readily reacts with SbCl3 to form the corresponding SbIII adduct. One‐electron reduction gives rise to the first example of a neutral antimony‐centered radical characterized in solution. Two‐electron reduction affords a Lewis base stabilized chloro‐stibinidene, whereas three‐electron reduction gives an antimony diatomic species capped by two carbenes. The radical has been characterized by EPR spectroscopy, while the structure of the other three species has been ascertained by single‐crystal X‐ray diffraction. In these four species, the formal oxidation state of the metalloid diminishes from III, to II, to I, and finally 0.  相似文献   

2.
Primary free radical formation in trehalose dihydrate single crystals X-irradiated at 10 K was investigated at the same temperature using X-band Electron Paramagnetic Resonance (EPR), Electron Nuclear Double Resonance (ENDOR) and ENDOR-induced EPR (EIE) techniques. The ENDOR results allowed the unambiguous determination of six proton hyperfine coupling (HFC) tensors. Using the EIE technique, these HF interactions were assigned to three different radicals, labeled R1, R2 and R3. The anisotropy of the EPR and EIE spectra indicated that R1 and R2 are alkyl radicals (i.e. carbon-centered) and R3 is an alkoxy radical (i.e. oxygen-centered). The EPR data also revealed the presence of an additional alkoxy radical species, labeled R4. Molecular modeling using periodic Density Functional Theory (DFT) calculations for simulating experimental data suggests that R1 and R2 are the hydrogen-abstracted alkyl species centered at C5' and C5, respectively, while the alkoxy radicals R3 and R4 have the unpaired electron localized mainly at O2 and O4'. Interestingly, the DFT study on R4 demonstrates that the trapping of a transferred proton can significantly influence the conformation of a deprotonated cation. Comparison of these results with those obtained from sucrose single crystals X-irradiated at 10 K indicates that the carbon situated next to the ring oxygen and connected to the CH(2)OH hydroxymethyl group is a better radical trapping site than other positions.  相似文献   

3.
Three different samples of ultra high molecular weight polyethylene have been irradiated with a high energy source (electron beam), and radicals have been generated. Different radical species have been assigned on the basis of their electron paramagnetic resonance spectra. Electron paramagnetic resonance data have been used also to evaluate the amount of each kind of radical that has been generated on different starting materials. The structure of the polymer (number of double bonds or crystallinity) is strictly connected to the response of the sample itself to the irradiation. A rationalization between these different parameters has been performed in order to evaluate the stability of polymer samples toward high energy irradiation processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
If films of polyolefins are ultraviolet-irradiated at liquid nitrogen temperature, alkyl radicals which can be examined by EPR are produced. No EPR spectra are observed from polyolefins irradiated at room temperature in air. Ultraviolet irradiation of polyolefins containing small alkyl side chains generally produces radicals corresponding to the pendant group or methyl radicals if the side chains contain a methyl branch. For some polymers the radical species could not be identified with certainty. Stabilization studies indicate that an optimum concentration of ultraviolet stabilizer is necessary for maximum stabilization of polyolefins. Preliminary results of EPR studies of the ultraviolet irradiation of various polyolefins are given, and some possible radical species are discussed.  相似文献   

5.
Identification of the paramagnetic species present in the Cu(I)Br‐catalyzed atom transfer radical polymerization (ATRP) of a model monomer (isobornyl acrylate) has been carried out by electron paramagnetic resonance (EPR) in the continuous wave mode at 90 K. Up to five different species—four copper‐based species and one organic radical—were detected with this technique. The EPR parameters of the copper‐based species are found to differ strongly, and originate from diverse isolated Cu(II) complexes, as well as dipolarly interacting and even exchange‐coupled Cu(II) species. The work highlights the complexity of the copper‐based EPR signal observed in copper‐mediated ATRP reactions. Analysis of the time evolution of the individual EPR contributions reveals the disadvantages of quantitative kinetics studies based on the summed EPR intensity of all copper‐based species, as is commonly used in literature for this type of reactions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1493–1501, 2010  相似文献   

6.
Porphyrin metal‐organic frameworks (PMOFs) are emerging as heterogeneous photocatalysts owing to the well‐designed frameworks incorporated with powerful light‐harvesting porphyrin chromophores. The porous and stable framework Ir?PCN‐224 (which is also denoted as Ir?PMOF‐1), which has been prepared by the self‐assembly of Ir(TCPP)Cl (TCPP=tetrakis(4‐carboxyphenyl)porphyrin) and ZrCl4, is reported herein to be efficient for the aerobic cross‐dehydrogenative carbon?phosphorus coupling reaction, giving rise to a high turn‐over number (TON) of up to 17200 under visible light irradiation (λ≥420 nm). Electron paramagnetic resonance (EPR) experiments disclose that the active species might be the superoxide radical anion (O2.?). Additionally, the intermediate imine cation has been detected by high‐resolution mass spectrometry (HRMS).  相似文献   

7.
N‐Heterocyclic carbene (NHC)‐ and cyclic (alkyl)(amino)carbene (CAAC)‐stabilized borafluorene radicals have been isolated and characterized by elemental analysis, single‐crystal X‐ray diffraction, UV/Vis absorption, cyclic voltammetry (CV), electron paramagnetic resonance (EPR) spectroscopy, and theoretical studies. Both the CAAC–borafluorene radical ( 2 ) and the NHC–borafluorene radical ( 4 ) have a considerable amount of spin density localized on the boron atoms (0.322 for 2 and 0.369 for 4 ). In compound 2 , the unpaired electron is also partly delocalized over the CAAC ligand carbeneC and N atoms. However, the unpaired electron in compound 4 mainly resides throughout the borafluorene π‐system, with significantly less delocalization over the NHC ligand. These results highlight the Lewis base dependent electrostructural tuning of materials‐relevant radicals. Notably, this is the first report of crystalline borafluorene radicals, and these species exhibit remarkable solid‐state and solution stability.  相似文献   

8.
Utilizing a cyclic (alkyl)(amino)carbene (CAAC) as a ligand, neutral CAAC‐stabilized radicals containing a boryl functionality could be prepared by reduction of the corresponding haloborane adducts. The radical species with a duryl substituent was fully characterized by single‐crystal X‐ray structural analysis, EPR spectroscopy, and DFT calculations. Compared to known neutral boryl radicals, the isolated radical species showed larger spin density on the boron atom. Furthermore, the compound that was isolated is extraordinarily stable to high temperatures under inert conditions, both in solution and in the solid state. Electrochemical investigations of the radical suggest the possibility to generate a stable formal boryl anion species.  相似文献   

9.
The photochemistry of 2‐iodo‐3,4,5,6‐tetrafluorophenyl azide ( 7 d ) has been investigated in argon and neon matrices at 4 K, and the products characterized by IR and EPR spectroscopy. The primary photochemical step is loss of a nitrogen molecule and formation of phenyl nitrene 1 d . Further irradiation with UV or visible light results in mixtures of 1 d with azirine 5 d ′, ketenimine 6 d ′, nitreno radical 2 d , and azirinyl radical 9 . The relative amounts of these products strongly depend on the matrix and on the irradiation conditions. Nitreno radical 2 d with a quartet ground state was characterized by EPR spectroscopy. Electronic structure calculations in combination with the experimental results allow for a detailed understanding of the properties of this unusual new type of organic high‐spin molecules.  相似文献   

10.
Through the use of [Ru(bpy)3Cl2] (bpy=2,2′‐bipyridine) and [Ir(ppy)3] (ppy=phenylpyridine) as photocatalysts, we have achieved the first example of visible‐light photocatalytic radical alkenylation of various α‐carbonyl alkyl bromides and benzyl bromides to furnish α‐vinyl carbonyls and allylbenzene derivatives, prominent structural elements of many bioactive molecules. Specifically, this transformation is regiospecific and can tolerate primary, secondary, and even tertiary alkyl halides that bear β‐hydrides, which can be challenging with traditional palladium‐catalyzed approaches. The key initiation step of this transformation is visible‐light‐induced single‐electron reduction of C? Br bonds to generate alkyl radical species promoted by photocatalysts. The following carbon? carbon bond‐forming step involves a radical addition step rather than a metal‐mediated process, thereby avoiding the undesired β‐hydride elimination side reaction. Moreover, we propose that the Ru and Ir photocatalysts play a dual role in the catalytic system: they absorb energy from the visible light to facilitate the reaction process and act as a medium of electron transfer to activate the alkyl halides more effectively. Overall, this photoredox catalysis method opens new synthetic opportunities for the efficient alkenylation of alkyl halides that contain β‐hydrides under mild conditions.  相似文献   

11.
The neutral radical (Me2‐cAAC)2AlCl2 ( 2 ) is stabilized by cyclic (alkyl)(amino)carbenes (cAACs). Complex 2 was synthesized by reduction of the Me2‐cAAC:→AlCl3 ( 1 ) adduct with KC8 in the presence of another equivalent of Me2‐cAAC. The crystal structure of 2 shows that the Al−C bond lengths of the two carbenes bound to the Al center are considerably different, which is likely the result of intermolecular interactions. Quantum‐chemical calculations from the gas phase give an equilibrium structure with identical Al−C bond lengths. Compound 2 exhibits monoradical character, which was confirmed by EPR measurements. A bonding analysis indicates that the unpaired electron resides mainly at the carbene carbon atoms. Compound 2 is an example for an unusual neutral Al radical.  相似文献   

12.
Intermolecular C?H alkylation of simple arenes in the presence of an iron catalyst has been achieved in a cascade manner with an aminative cyclization triggered by N?O bond cleavage of an alkene‐tethered oxime ester. Various arenes, including electron‐rich and electron‐poor arenes, and heteroarenes can be employed in the reaction system. Regioselectivity and radical trapping experiments support the involvement of alkyl radical species, which undergo a homolytic aromatic substitution (HAS) to afford the arylation products.  相似文献   

13.
Photoinduced electron transfer has been observed in a molecular triad, consisting of a porphyrin (P) covalently linked to a tetrathiafulvalene (TTF) and a fullerene derivative (C(60)), in the different phases of the liquid crystal E-7 and in a glass of 2-methyltetrahydrofuran (2-MeTHF) by means of time-resolved electron paramagnetic resonance (EPR) spectroscopy. In both solvents, an EPR signal observed immediately after excitation has been assigned to the radical pair TTF(*+)-P-C(60)(*-), based on its magnetic interaction parameters and spin polarization pattern. In the 2-MeTHF glass and the crystalline phase of E-7, the TTF(*+)-P-C(60)(*-) state is formed from the TTF-(1)P-C(60) singlet state via an initial TTF-P(*+)-C(60)(*-) charge-separated state. Long-lived charge separation ( approximately 8 mus) for the singlet-born radical pair is observed in the 2-MeTHF glass at cryogenic temperatures. In the nematic phase of E-7, a high degree of ordering in the liquid crystal is achieved by the molecular triad. In this phase, both singlet- and triplet-initiated electron transfer routes are concurrently active. At room temperature in the presence of the external magnetic field, the triplet-born radical pair (T)(TTF(*+)-P-C(60)(*-)) has a lifetime of approximately 7 mus, while that of the singlet-born radical pair (S)(TTF(*+)-P-C(60)(*-)) is much shorter (<1 mus). The difference in lifetimes is ascribed to spin dynamic effects in the magnetic field.  相似文献   

14.
The radicals obtained in trehalose dihydrate single crystals after 77 K X-irradiation have been investigated at the same temperature using X-band electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), and ENDOR-induced EPR (EIE) techniques. Five proton hyperfine coupling tensors were unambiguously determined from the ENDOR measurements and assigned to three carbon-centered radical species (T1, T1*, and T2) based on the EIE spectra. EPR angular variations revealed the presence of four additional alkoxy radical species (T3 to T6) and allowed determination of their g tensors. Using periodic density functional theory (DFT) calculations, T1/T1*, T2, and T3 were identified as H-loss species centered at C4, C1', and O2', respectively. The T4 radical is proposed to have the unpaired electron at O4, but considerable discrepancies between experimental and calculated HFC values indicate it is not simply the (net) H-loss species. No suitable models were found for T5 and T6. These exhibit a markedly larger g anisotropy than T3 and T4, which were not reproduced by any of our DFT calculations.  相似文献   

15.
Beta-D-fructose single crystals were in situ X-irradiated at 80 K and measured using electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR) and ENDOR-induced EPR (EIE) techniques at Q-band (34 GHz) microwave frequencies. The measurements revealed the presence of at least four carbon-centered radicals stable at 80 K. By means of ENDOR angular variations in the three principal crystallographic planes, six proton hyperfine coupling tensors could be determined and were assigned to four different radicals by the aid of EIE. Two of the radicals exhibit only beta-proton hyperfine couplings and reveal almost identical EIE spectra. For the other two radicals, the major hyperfine splitting originates from a single alpha-proton hyperfine coupling and their EIE spectra were also quite similar. The similarity of the EIE spectra and hyperfine tensors led to the assumption that there are only two essentially different radical structures. The radical exhibiting only beta-proton hyperfine couplings was assigned to a C3 centered radical arising from H3 abstraction and the other radical suggested to be an open-ring species with a disrupted C2-C3 bond and a double C2-O2 bond. A possible formation mechanism for the latter open-ring radical is presented. By means of cluster density functional theory (DFT) calculations, the structures of the two radicals were determined and a fairly good agreement between the calculated and experimental hyperfine tensors was found.  相似文献   

16.
An efficient method for photocatalytic perfluoroalkylation of vinyl‐substituted all‐carbon quaternary centers involving 1,2‐aryl migration has been developed. The rearrangement reactions use fac‐Ir(ppy)3, visible light and commercially available fluoroalkyl halides and can generate valuable multisubstituted perfluoroalkylated compounds in a single step that would be challenging to prepare by other methods. Mechanistically, the photoinduced alkyl radical addition to an alkene leads to the migration of a vicinal aryl substituent from its adjacent all‐carbon quaternary center with the concomitant generation of a C‐radical bearing two electron‐withdrawing groups that is further reduced by a hydrogen donor to complete the domino sequence.  相似文献   

17.
Ultra high molecular weight polyethylene (UHMWPE) has been studied with different magnetic resonance techniques to elicit information on the nature and the location of radicals generated during high energy irradiation. Field swept electron paramagnetic resonance, pulsed Davies electron nuclear double resonance and hyperfine sublevel correlation spectroscopic measurements allowed extracting for the first time the full 1H hyperfine coupling tensors of the most abundant radical, i.e. a secondary alkyl radical and to ascertain the formation of allyl radicals in the first stages of the irradiation process. The 1H hyperfine coupling tensors are analogous to those reported for single crystal irradiated polyethylene, suggesting that radicals generated in UHMWPE are located in the crystalline region of the polymer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Thioridazine is a phenothiazine derivative that has been used as an antipsychotic; it rarely causes photosensitization. However, we noticed that this drug induced an erythematous reaction in a photopatch test. Six volunteers were patch tested with various concentrations of thioridazine and irradiated with a range of UVA doses, and the time courses of the color of and blood flow to the test sites were monitored. The free-radical metabolites of thioridazine generated under UVA irradiation and its effects on ascorbate radical formation were examined with an electron paramagnetic resonance (EPR) spectrometer in vitro. As a result, immediate erythema developed during UVA irradiation in most subjects when 1% thioridazine was applied for 48 h and irradiation doses were higher than 4 J cm(-2). Another peak of erythematous reaction was observed 8-12 h after irradiation. The in vitro examination detected an apparent EPR signal, which appeared when 2 mM thioridazine in air-saturated phosphate buffer was irradiated with UVA, whereas this reaction was attenuated under anaerobic conditions. The EPR signal of the ascorbate radical was augmented under both aerobic and anaerobic conditions. Thioridazine-derived oxidants and/or thioridazine radicals generated during UVA irradiation seem to play an important role in this unique phototoxic reaction.  相似文献   

19.
The effect of electron beam irradiation on the microstructure of cellulose has been investigated using positron annihilation lifetime spectroscopy (PALS) and electron paramagnetic resonance (EPR) Spectroscopy. PALS studies of irradiated cellulose samples showed that ortho-positronium (o-Ps) lifetime increases with an increase in dose up to 80 kGy and decreases at higher doses. The EPR signal of the irradiated cellulose matrix showed the presence of multiple radical sites. These results are discussed on the basis of chemical and physical changes occurring at the microscopic level in the cellulose due to irradiation.  相似文献   

20.
Singlet oxygen, a harmful reactive oxygen species, can be quantified with the substance 2,2,6,6‐tetramethylpiperidine (TEMP) that reacts with singlet oxygen, forming a stable nitroxyl radical (TEMPO). TEMPO has earlier been quantified with electron paramagnetic resonance (EPR) spectroscopy. In this study, we designed an ultra–high‐performance liquid chromatographic—tandem mass spectrometric (UHPLC‐ESI‐MS/MS) quantification method for TEMPO and showed that the method based on multiple reaction monitoring (MRM) can be used for the measurements of singlet oxygen from both nonbiological and biological samples. Results obtained with both UHPLC‐ESI‐MS/MS and EPR methods suggest that plant thylakoid membranes produce 3.7 × 10?7 molecules of singlet oxygen per chlorophyll molecule in a second when illuminated with the photosynthetic photon flux density of 2000 μmol m?2 s?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号