首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of the BiFe0.95Mn0.05O3 thickness and a SrRuO3 (SRO) buffer layer on the microstructure and electrical properties of BiFeO3/BiFe0.95Mn0.05O3 (BFO/BFMO) bilayered thin films were investigated, where BFO/BFMO bilayered thin films were fabricated on the SRO/Pt/Ti/SiO2/Si(100) substrate by a radio frequency sputtering. All thin films are of a pure perovskite structure with a mixture of (110) and (111) orientations regardless of the BFMO layer thickness. Dense microstructure is demonstrated in all thin films because of the introduction of BFMO layers. The SRO buffer layer can also further improve the ferroelectric properties of BFO/BFMO bilayered thin films as compared with those of these thin films without a SRO buffer layer. The BFO/BFMO bilayered thin film with a thickness ratio of 220/120 has an enhanced ferroelectric behavior of 2P r??165.23???C/cm2 and 2E c??518.56?kV/cm, together with a good fatigue endurance. Therefore, it is an effective way to enhance the ferroelectric and fatigue properties of bismuth ferrite thin films by constructing such a bilayered structure and using a SRO buffer layer.  相似文献   

2.
The photovoltaic (PV) effect of a bilayer anatase TiO2/BiFeO3 (BFO) film has been studied. The 20-nm ultrathin BFO layers were deposited on the fluorine-doped tin oxide (FTO) glass substrates by the chemical solution deposition method. An anatase TiO2 layer is deposited subsequently on the BFO surface via a screen-printing technique. It is found that the FTO/TiO2/Au cell exhibits negligible PV effect under solar exposure, while the one after introducing an ultrathin BFO film between TiO2 and FTO leads to a considerable PV effect with an open-circuit voltage of ?0.58 V and a photocurrent density of 18.27 µA/cm2. The FTO/BiVO4 (BVO)/TiO2/Au cell was constructed to investigate the underlying mechanism for the observed effect. A negligible PV effect of the FTO/BVO/TiO2/Au cell indicates that the PV effect of the FTO/BFO/TiO2/Au cell arises mainly from a built-in electric field in the BFO film induced by the self-polarization. Our work opens up a new path to utilize TiO2 and may influence the future design of solar cells.  相似文献   

3.
0.60Bi0.90La0.10FeO3–0.40Pb(Zr0.52Ti0.48)O3 composite thin films were deposited on Pt/TiO2/SiO2/Si(100) substrates by radio-frequency sputtering and their ferroelectric and fatigue properties were mainly investigated. The composite thin films have a low dielectric loss, a high dielectric constant, and enhanced ferroelectric properties of 2P r~122.6 μC/cm2 and 2E c~479.3 kV/cm, together with a fatigue-free behavior at 200 kHz. Their fatigue behavior is strongly dependent on measurement frequencies, and the concentration of oxygen vacancies plays an important role in their fatigue behavior.  相似文献   

4.
顾建军  刘力虎  岂云开  徐芹  张惠敏  孙会元 《物理学报》2011,60(6):67701-067701
采用化学溶液沉积法(CSD)在Au/Ti/SiO2/Si衬底上通过自组装生长制备了BiFeO3-NiFe2O4 (BFO-NFO)多铁性复合薄膜.X射线衍射图谱(XRD)显示形成了分离的钙钛矿结构的铁电相BFO和尖晶石结构的铁磁相NFO. NFO的引入导致复合薄膜的泄漏电流减小,剩余极化强度增加.相比于纯BFO薄膜,0.25NFO-0.75BFO样品泄漏电流下降了约两个数量级,剩余极化强度( M 关键词: 多铁性复合薄膜 磁电耦合 铁电性 铁磁性  相似文献   

5.
Ferroelectric and fatigue behavior of bilayered thin films consisting of Mn4+-modified BiFeO3 and Zn2+-modified BiFeO3, which were deposited on SrRuO3-buffered Pt coated silicon substrates, were systematically investigated. The (1 1 1) orientation is induced for the BiFe0.95Mn0.05O3/BiFe0.95Zn0.05O3 bilayer, due to the introduction of the bottom BiFe0.95Zn0.05O3 layer. With increasing the thickness ratio of the BiFe0.95Mn0.05O3 layer, their leakage current decreases, and the fatigue endurance is greatly improved owing to the introduction of the BiFe0.95Mn0.05O3 layer with a lower fatigue rate. The BiFe0.95Mn0.05O3/BiFe0.95Zn0.05O3 bilayer with the thickness ratio of 3:1 exhibits a larger remanent polarization of 2Pr ∼ 161.0 μC/cm2 than those of bilayers with different thickness ratios, while their coercive field slightly increases with increasing the thickness ratio of the BiFe0.95Mn0.05O3 layer.  相似文献   

6.
《Current Applied Physics》2015,15(5):584-587
We investigated ferroelectric characteristics of BiFeO3 (BFO) thin films on SrRuO3 (SRO)/yttria-stabilized zirconia (YSZ)/glass substrates grown by pulsed laser deposition. YSZ buffer layers were employed to grow highly crystallized BFO thin films as well as SRO bottom electrodes on glass substrates. The BFO thin films exhibited good ferroelectric properties with a remanent polarization of 2Pr = 59.6 μC/cm2 and fast switching behavior within about 125 ns. Piezoelectric force microscopy (PFM) study revealed that the BFO thin films have much smaller mosaic ferroelectric domain patterns than epitaxial BFO thin films on Nb:SrTiO3 substrates. Presumably these small domain widths which originated from smaller domain energy give rise to the faster electrical switching behavior in comparison with the epitaxial BFO thin films on Nb:SrTiO3 substrates.  相似文献   

7.
This Letter demonstrates improved passivating contacts for silicon solar cells consisting of doped silicon films together with tunnelling dielectric layers. An improvement is demonstrated by replacing the commonly used silicon oxide interfacial layer with a silicon nitride/silicon oxide double interfacial layer. The paper describes the optimization of such contacts, including doping of a PECVD intrinsic a‐Si:H film by means of a thermal POCl3 diffusion process and an exploration of the effect of the refractive index of the SiNx. The n+ silicon passivating contact with SiNx /SiOx double layer achieves a better result than a single SiNx or SiOx layer, giving a recombination current parameter of ~7 fA/cm2 and a contact resistivity of ~0.005 Ω cm2, respectively. These self‐passivating electron‐selective contacts open the way to high efficiency silicon solar cells. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

8.
Ferroelectric and dielectric properties of bilayered ferroelectric thin films, SrBi4Ti4O15 grown on Bi4Ti3O12, were investigated. The thin films were annealed at 700°C under oxygen atmosphere. The bilayered thin films were prepared on a Pt(111)/Ti/SiO2/Si substrate by a chemical solution deposition method. The dielectric constant and dielectric loss of the bilayered thin films were 645 and 0.09, respectively, at 100 kHz. The value of remnant polarization (2P r) measured from the ferroelectric thin film capacitors was 60.5 μC/cm2 at electric field of 200 kV/cm. The remnant polarization was reduced by 22% of the initial value after 1010 switching cycles. The results showed that the ferroelectric and dielectric properties of the SrBi4Ti4O15 on Bi4Ti3O12 ferroelectric thin films were better than those of the SrBi4Ti4O15 grown on a Pt-coated Si substrate suggesting that the improved properties may be due to the different nucleation and growth kinetics of SrBi4Ti4O15 on the c-axis-oriented Bi4Ti3O12 layer or on the Pt-coated Si substrate.  相似文献   

9.
The ferroelectric properties of BiFeO3 (BFO) films spray deposited on porous silicon have been studied. The analysis of XRD and FESEM investigations show that the crystalline strain in the BFO films increases with pore size. The BFO films on porous silicon substrate showed improvement in ferroelectric fatigue behavior, remanent polarization and ferroelectric switching time. A maximum memory window of 5.54 V at 1 MHz and a large remanent polarization (Pr) of 13.1 μC/cm2 have been obtained at room temperature. The improvement in the ferroelectric properties of these films has been correlated to the crystalline strain.  相似文献   

10.
The (Pb0.90La0.10)Ti0.975O3/PbTiO3 (PLT/PT), PbTiO3/(Pb0.90La0.10)Ti0.975O3/PbTiO3 (PT/PLT/PT) multilayered thin films with a PbOx buffer layer were in situ deposited by RF magnetron sputtering at the substrate temperature of 600 °C. With this method, highly (1 0 0)-oriented PLT/PT and PT/PLT/PT multilayered thin films were obtained. The PbOx buffer layer leads to the (1 0 0) orientation of the films. The dielectric, ferroelectric and pyroelectric properties of the PLT multilayered thin films were investigated. It is found that highly (1 0 0)-oriented PT/PLT/PT multilayered thin films possess higher remnant polarization 2Pr (44.1 μC/cm2) and better pyroelectric coefficient at room temperature p (p = 2.425 × 10−8 C/cm2 K) than these of PLT and PLT/PT thin films. These results indicate that the design of the PT/PLT/PT multilayered thin films with a PbOx buffer layer should be an effective way to enhance the dielectric, ferroelectric and pyroelectric properties. The mechanism of the enhanced ferroelectric properties was also discussed.  相似文献   

11.
The present work reports on resistive switching (RS) characteristics of Neodymium (Nd)-doped bismuth ferrite (BFO) layers. The Nd (2–10 at%) doped BFO thin film layers were deposited using a spray pyrolysis method. The structural analysis reveals that a higher Nd doping concentration in BFO leads to significant distortion of the prepared Nd:BFO thin films from rhombohedral to tetragonal characteristics. The morphological analysis shows that all the deposited Nd:BFO thin films have regularly arranged grains. The X-ray photoelectron spectroscopy (XPS) analysis reveals that the prepared Nd:BFO thin films have a higher Fe 3+/Fe 2+ratio and less oxygen vacancy (VO) defects which enriches the ferroelectric characteristics in Nd:BFO layers. The polarization-electric field (P-E) and RS characteristics of the fabricated Nd:BFO-based RS device were examined. It was observed that the Nd (7 at%) doped BFO RS device shows large remnant polarization (P r) of 0.21 μC/cm2 and stable RS characteristics.  相似文献   

12.
In this work, In/Te bilayer thin films were prepared using sequential thermal evaporation method and subsequently irradiated using swift heavy ions (SHIs) of 100 MeV silicon (Si) with different fluences (1×1013 to 5×1013/cm2). The inter-diffusion of In and Te layers was highly controlled by SHI irradiation and the In2Te3 formation capability was compared with that of the conventional annealing method. The structural as well as optical properties of a post-sintered SHI-irradiated In/Te bilayer were investigated using X-ray diffraction (XRD) measurements and UV–visible spectroscopy, respectively. We found that irradiated samples showed single-phase In2Te3 under post-annealed conditions at 150 °C unlike that prepared using the conventional thermal annealing method, which showed mixed phases under similar conditions. This confirms the effective inter-diffusion in bilayer films by SHI irradiation toward the formation of single-phase In2Te3. The estimated optical band gap energy was found to be 1.1±0.5 eV and strongly corroborated the XRD results. In addition, the estimated refractive index (n) value of the SHI-irradiated sample (~3.3) was higher than that of the sample obtained through the conventional annealing method (~2.8). This proves that SHI offers a highly compact nature even at low temperatures. This work has a wide scope for achieving single-phase alloyed films through bilayer mixing by SHI irradiation.  相似文献   

13.
Bi0.8La0.2FeO3/CoFe2O4 (BLFO/CFO) multilayer thin films (totally 20 layers BLFO and 19 layers CFO) were prepared on Pt/Ti/SiO2/Si substrates by pulsed laser deposition. X-ray diffraction and transmission electron microscope measurements show that the films are polycrystalline and consisted of multilayered structure. Ferroelectric hysteresis loops with remnant polarization and saturated polarization of 4.2 and 13.3 μC/cm2, respectively, were observed. On the other hand, the films show well-shaped magnetization hysteresis loops with saturated and remnant magnetization of 34.7 and 11.4 emu/cm3, respectively, which are significantly larger than pure BLFO thin films deposited under the same conditions. These results indicate that constructing epitaxial superlattice might be a promising way to fabricate multiferroics with improved properties.  相似文献   

14.
Artificial multiferroic superlattices (SL), consisting of BiFeO3 (16 nm)/Bi0.5Na0.5TiO3 (5 nm) (BFO/BNT SL), were grown on (001) SrTiO3 single crystal by pulsed laser deposition method. The cross-sectional, surface morphology, and crystallographic structure of BFO/BNT SL and BFO single layer were investigated. It was found that the electrical, ferroelectric, and magnetic properties of BFO/BNT SL exhibit a remarkably enhancement compared with BFO single layer. The influence of BNT buffering layer, lattice strain, and interfaces interplay of the SL structure are supposed to benefit their ferroelectric and ferromagnetic properties. Our works suggested the BFO/BNT SL with an improved multiferroic characteristics have a promising application for the future informational storage devices.  相似文献   

15.
BiFeO3 (BFO) ceramics were prepared by a modified solid-state-reaction method which adopts a higher heating/cooling rate during the sintering process than usually used. It was found that the calcination temperature T cal (from 400 to 750°C) does not influence the BFO phase formation, while the sintering temperature T sin (from 815 to 845°C) dominates the phase purity. The optimum sintering temperature was in the range from 825 to 835°C. The optimized samples exhibit saturated ferroelectric hysteresis loops with a remnant polarization of 13.2 μC/cm2. The measured piezoelectric coefficient d 33 was 45 pC/N. No remnant magnetization was observed in all of the samples. The pyroelectric properties were studied as a function of temperature and frequency. A pyroelectric coefficient as high as 90 μC/m2 K was obtained at room temperature in the optimized sample. An abrupt decrease of the pyroelectric coefficient was observed at temperatures between 70 and 80°C. On the basis of our results, BFO may have the potential for pyroelectric applications.  相似文献   

16.
An intrinsic, carbon-rich a-SiC x :H thin film, prepared by the plasma-enhanced chemical vapour deposition (PECVD) technique, has been studied mainly by AC admittance and small-pulse deep-level transient spectroscopy (DLTS) measurements on an Al/a-SiC x :H/p-Si metal–insulator–semiconductor (MIS) structure. The effects of measurement temperature, voltage and small-signal AC modulation frequency on the MIS capacitor are qualitatively and quantitatively described. The kinetics of charge injection from the silicon substrate into the a-SiC x :H film, as a function of temperature and voltage bias stresses, are reported. Nearest-neighbour and variable-range hopping mechanisms are considered. An activation energy of ~?0.09?eV, and a density of states (DOS) of about 1019?cm?3/eV were found. The value of the DOS is in agreement with the effective interface DOS of above 1012?cm?2/eV assessed by both capacitance and DLTS measurements. The frequency (or temperature) dependence of the MIS capacitor over the whole DC voltage range is considered in detail. Single- and double-step carrier exchange mechanisms between the a-SiC x :H film and the silicon substrate, in the accumulation and depletion voltage regimes, respectively, are proposed.  相似文献   

17.
Photovoltaic (PV) properties of bismuth ferrite (BFO) and barium titanate (BTO) multilayered ferroelectric BFO/BTO/BFO/BTO thin film structure deposited on Pt/Ti/SiO2/Si substrates using chemical solution deposition technique are presented. X-ray diffraction analysis confirms pure phase polycrystalline nature of deposited perovskite multilayered structures. Simultaneously both distorted rhombohedral (R3c) and tetragonal phases (P4mm) of the respective BFO and BTO components are also well retained. The ferroelectric sandwiched structures grown on fused quartz substrates exhibit high optical transmittance (~70%) with an energy band gap 2.62 eV. Current–voltage characteristics and PV response of multilayered structures is determined in metal-ferroelectric-metal (MFM) capacitor configuration. Considerably low magnitude of dark current density 1.53×10−7 A at applied bias of 5 V establish the resistive nature of semi-transparent multilayered structure. Enhanced PV response with 40 nm thin semitransparent Au as top electrode is observed under solid-state violet laser illumination (λ – 405 nm, 160 mW/cm2). The short circuit current density and open circuit voltage are measured to be 12.65 µA/cm2 and 1.43 V respectively with a high retentivity. The results obtained are highly encouraging for employing artificial multilayered engineering to improve PV characteristics.  相似文献   

18.
Gallium antimonide (GaSb) films were deposited onto fused silica and n-Si (100) substrates by coevaporating Ga and Sb from appropriate evaporation sources. The films were polycrystalline in nature. The size and the shape of the grains varied with the change in the substrate temperature during deposition. The average surface roughness of the films was estimated to be 10 nm. Grain boundary trap states varied between 2×1012 and 2.2×1012 cm?2 while barrier height at the grain boundaries varied between 0.09 eV and 0.10 eV for films deposited at higher temperatures. Stress in the films decreased for films deposited at higher temperatures. XPS studies indicated two strong peaks located at ~543 eV and ~1121 eV for Sb 3d3/2 and Ga 2p3/2 core-level spectra, respectively. The PL spectra measured at 300 K was dominated by a strong peak located ~0.55 eV followed by two low intensity peaks ~0.63 eV and 0.67 eV. A typical n-Si/GaSb photovoltaic cell fabricated here indicated V oc~311 mV and J~29.45 mA/cm2, the density of donors (N d)~3.87×1015 cm?3, built in potential (V bi)~0.48 V and carrier life time (τ)~28.5 ms. Impedance spectroscopy measurements indicated a dielectric relaxation time ~100 μs.  相似文献   

19.
In a TiO2–perovskite heterojunction solar cell (TiO2–PHSC), besides the perovskite CH3NH3PbX3, TiO2 as one side of the TiO2/CH3NH3PbX3 heterojunction also plays an important role in the photovoltaic effect. In order to improve the performance of the TiO2–PHSC with the structure of glass/FTO/compact TiO2/mesoporous TiO2/CH3NH3PbI3–xClx /poly‐TPD (poly(N,N ′‐bis(4‐butylphenyl)‐N,N ′‐bis(phenyl)benzidine))/Au, a 2 nanometer thick Cs2CO3 layer is thermally evaporated on the mesoporous TiO2 layer. The short‐circuit current density (Jsc) raises from 17.7 mA cm–2 to 18.9 mA cm–2, the open‐circuit voltage (Voc) from 0.81 V to 0.87 V, and the fill factor (FF) from 55.2% to 67.3%; as a result, the power conservation efficiency (PCE) increases from 8.0% to 11.1% under AM 1.5G solar illumination (100 mW cm–2). Moreover, in a TiO2–PHSC free of mesoporous TiO2, where Cs2CO3 is evaporated on the compact TiO2 layer, the Jsc, Voc, FF and PCE values increase from 16.0 mA cm–2, 0.83 V, 50.8% and 6.7% to 17.9 mA cm–2, 0.90 V, 59.3%, and 9.5%, respectively. The reasons of the PCE increase for either the first kind of TiO2–PHSC or the mesoporous‐TiO2‐free TiO2–PHSC with a nanometer‐thick Cs2CO3 layer on mesoporous TiO2 or compact TiO2 are discussed. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

20.
Effects of BiFeO3 (BFO) content on the microstructure and electrical properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 (BCTZ) ceramics prepared by normal sintering in air were investigated. A stable solid solution is formed between BCTZ and BFO. The grain size gradually becomes smaller, and the ceramics become denser with increasing the BFO content. The Curie temperature, dielectric constant, and dielectric loss of BCTZ ceramics decrease simultaneously with the introduction of BFO. Moreover, the remanent polarization reaches a maximum at x = 0.2 mol%, and the coercive field continuously increases with increasing the BFO content due to the introduction of BFO with a higher coercive field. Improved piezoelectric properties (d33 ∼ 405 pC/N and kp ∼ 0.44) are demonstrated for the BCTZ ceramic with x = 0.2 mol%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号