首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of heteroleptic bis(tridentate) RuII complexes featuring N^C^N‐cyclometalating ligands is presented. The 1,2,3‐triazole‐containing tridentate ligands are readily functionalized with hydrophobic side chains by means of click chemistry and the corresponding cyclometalated RuII complexes are easily synthesized. The performance of these thiocyanate‐free complexes in a dye‐sensitized solar cell was tested and a power conversion efficiency (PCE) of up to 4.0 % (Jsc=8.1 mA cm?2, Voc=0.66 V, FF=0.70) was achieved, while the black dye ((NBu4)3[Ru(Htctpy)(NCS)3]; Htctpy=2,2′:6′,2′′‐terpyridine‐4′‐carboxylic acid‐4,4′′‐dicarboxylate) showed 5.2 % (Jsc=10.7 mA cm?2, Voc=0.69 V, FF=0.69) under comparable conditions. When co‐adsorbed with chenodeoxycholic acid, the PCE of the best cyclometalated dye could be improved to 4.5 % (Jsc=9.4 mA cm?2, Voc=0.65 V, FF=0.70). The PCEs correlate well with the light‐harvesting capabilities of the dyes, while a comparable incident photon‐to‐current efficiency was achieved with the cyclometalated dye and the black dye. Regeneration appeared to be efficient in the parent dye, despite the high energy of the highest occupied molecular orbital. The device performance was investigated in more detail by electrochemical impedance spectroscopy. Ultimately, a promising RuII sensitizer platform is presented that features a highly functionalizable “click”‐derived cyclometalating ligand.  相似文献   

2.
Two novel main chain polymeric metal complexes containing 8‐hydroxyquinoline europium complexes and phenylethyl or fluorene units: 1,4‐Dioctyloxy‐2,5‐bis[2‐(8‐hydroxyquinoline)‐vinyl]‐benzene Eu(III) (3) and 2,7‐bis[2‐(8‐hydroxyquinoline)‐vinyl]‐9,9′‐diocthylfluorene Eu(III) (4) with donor–acceptor‐π‐conjugated structure (D‐π‐A) have been synthesized and investigated as dye sensitizers for dye‐sensitized solar cells dyes (DSSCs). They have been determined and studied by FT‐IR, TGA, DSC, GPC, Elemental analysis, UV–vis absorption spectroscopy, photoluminescence spectroscopy, cyclic voltammetry, and application in dye‐sensitized solar cells (DSSCs) as dye sensitizers. On the basis of optimized dye and molecular structure, they have shown solar‐to‐electricity conversion efficiency 2.25% for 3 (Jsc = 4.77 mA cm?2, Voc = 630 mV, FF = 0.75) and 3.04% for 4 (Jsc = 6.33 mA cm?2, Voc = 640 mV, FF = 0.75), under the illumination of AM1.5G, 100 mW/cm2. The IPCE of 3 and 4 are 30% and 46% at 400 nm, respectively. Besides, they showed good stabilities with thermal decomposition temperatures at 280 °C and 225 °C, respectively, which are suitable for DSSCs. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1943–1951, 2010  相似文献   

3.
A series of simple phenothiazine‐based dyes, namely, TP , EP , TTP , ETP , and EEP have been developed, in which the thiophene (T), ethylenedioxythiophene (E), their dimers, and mixtures are present to modulate dye aggregation, charge recombination, and dye regeneration for highly efficient dye‐sensitized solar cell (DSSC) applications. Devices sensitized by the dyes TP and TTP display high power conversion efficiencies (PCEs) of 8.07 (Jsc=15.2 mA cm?2, Voc=0.783 V, fill factor (FF)=0.679) and 7.87 % (Jsc=16.1 mA cm?2, Voc=0.717 V, FF=0.681), respectively; these were measured under simulated AM 1.5 sunlight in conjunction with the I?/I3? redox couple. By replacing the T group with the E unit, EP ‐based DSSCs had a slightly lower PCE of 7.98 % with a higher short‐circuit photocurrent (Jsc) of 16.7 mA cm?2. The dye ETP , with a mixture of E and T, had an even lower PCE of 5.62 %. Specifically, the cell based on the dye EEP , with a dimer of E, had inferior Jsc and Voc values and corresponded to the lowest PCE of 2.24 %. The results indicate that the photovoltaic performance can be finely modulated through structural engineering of the dyes. The selection of T analogues as donors can not only modulate light absorption and energy levels, but also have an impact on dye aggregation and interfacial charge recombination of electrons at the interface of titania, electrolytes, and/or oxidized dye molecules; this was demonstrated through DFT calculations, electrochemical impedance analysis, and transient photovoltage studies.  相似文献   

4.
Poly(n‐isopropylacrylamide) (PNIPAAm) and its nanocomposite with exfoliated montmorillonite (MMT) were prepared by soap‐free emulsion polymerization and individually applied to gel the electrolyte systems for the dye‐sensitized solar cells (DSSCs). Each exfoliated MMT nanoplatelet had a thickness of ~ 1 nm, carried ~ 1.8 cation/nm2, and acted like a two‐dimensional electrolyte. The DSSC with the LiI/I2/tertiary butylpyridine electrolyte system gelled by this polymer nanocomposite had higher short‐circuit current density (Jsc) compared to that gelled by the neat PNIPAAm. The former has a Jsc of 12.6 mA/cm2, an open circuit voltage (Voc) of 0.73 V, and a fill factor (FF) of 0.59, which harvested 5.4% electricity conversion efficiency (η) under AM 1.5 irradiation at 100 mW/cm2, whereas the latter has Jsc = 7.28 mA/cm2, Voc = 0.72 V, FF = 0.60, and η = 3.17%. IPCE of the nanocomposite‐gelled DSSC were also improved. Electrochemical impedance spectroscopy of the DSSCs revealed that the nanocomposite‐gelled electrolytes significantly decreased the impedances in three major electric current paths of DSSCs, that is, the resistance of electrolytes and electric contacts, impedance across the electrolytes/dye‐coated TiO2 interface, and Nernstian diffusion within the electrolytes. The results were also consistent with the increased molar conductivity of nanocomposite‐gelled electrolytes. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 47–53, 2008  相似文献   

5.
New hemicyanine dyes ( CM101 , CM102 , CM103 , and CM104 ) in which tetrahydroquinoline derivatives are used as electron donors and N‐(carboxymethyl)‐pyridinium is used as an electron acceptor and anchoring group were designed and synthesized for dye‐sensitized solar cells (DSSCs). Compared with corresponding dyes that have cyanoacetic acid as the acceptor, N‐(carboxymethyl)‐pyridinium has a stronger electron‐withdrawing ability, which causes the absorption maximum of dyes to be redshifted. The photovoltaic performance of the DSSCs based on dyes CM101 – CM104 markedly depends on the molecular structures of the dyes in terms of the n‐hexyl chains and methoxyl. The device sensitized by dye CM104 achieved the best conversion efficiency of 7.0 % (Jsc=13.4 mA cm?2, Voc=704 mV, FF=74.8 %) under AM 1.5 irradiation (100 mW cm?2). In contrast, the device sensitized by reference dye CMR104 with the same donor but the cyanoacetic acid as the acceptor gave an efficiency of 3.4 % (Jsc=6.2 mA cm?2, Voc=730 mV, FF=74.8 %). Under the same conditions, the cell fabricated with N719 sensitized porous TiO2 exhibited an efficiency of 7.9 % (Jsc=15.4 mA cm?2, Voc=723 mV, FF=72.3 %). The dyes CM101 – CM104 show a broader spectral response compared with the reference dyes CMR101 – CMR104 and have high IPCE exceeding 90 % from 450 to 580 nm. Considering the reflection of sunlight, the photoelectric conversion efficiency could be almost 100 % during this region.  相似文献   

6.
The synthesis, characterization, and photophysical and photovoltaic properties of two anthracene‐containing wide‐band‐gap donor and acceptor (D–A) alternating conjugated polymers ( P1 and P2 ) are described. These two polymers absorb in the range of 300–600 nm with a band gap of about 2.12 eV. Polymer solar cells with P1 :PC71BM as the active layer demonstrate a power conversion efficiency (PCE) of 2.23% with a high Voc of 0.96 V, a Jsc of 4.4 mA cm−2, and a comparable fill factor (FF) of 0.53 under simulated solar illumination of AM 1.5 G (100 mW cm−2). In addition, P2 :PC71BM blend‐based solar cells exhibit a PCE of 1.42% with a comparable Voc of 0.89 V, a Jsc of 3.0 mA cm−2, and an FF of 0.53.

  相似文献   


7.
Four main chain polymeric metal complexes (P1–P4) based on 1,10‐phenanthroline metal complexes via the Heck coupling have been synthesized and characterized by Fourier transform infrared spectroscopy, 1H NMR, UV–Vis absorption, photoluminescence spectroscopy, gel permeation chromatography, thermogravimetric analysis, differential scanning calorimetry, elemental analysis, and cyclic voltammetry. To investigate their photovoltaic properties, the dye‐sensitized solar cells based on these polymers dyes are studied, under the illumination of AM 1.5G, 100 mW/cm2. The study results show the four polymers exhibit good thermally stable and the solar cells based on them have good device performance, and the maximum power conversion efficiency is up to 0.735% for the solar cells based on P3 with a short‐circuit current (Jsc) of 1.68 mA/cm2 and an open‐circuit voltage (Voc) of 0.62 V. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Low‐cost transparent counter electrodes (CEs) for efficient dye‐sensitized solar cells (DSSCs) are prepared by using nanohybrids of carbon nanotube (CNT)‐supported platinum nanoparticles as highly active catalysts. The nanohybrids, synthesized by an ionic‐liquid‐assisted sonochemical method, are directly deposited on either rigid glass or flexible plastic substrates by a facile electrospray method for operation as CEs. Their electrochemical performances are examined by cyclic voltammetry, current density–voltage characteristics, and electrochemical impedance spectroscopy (EIS) measurements. The CNT/Pt hybrid films exhibit high electrocatalytic activity for I?/I3? with a weak dependence on film thickness. A transparent CNT/Pt hybrid CE film about 100 nm thick with a transparency of about 70 % (at 550 nm) can result in a high power conversion efficiency (η) of over 8.5 %, which is comparable to that of pyrolysis platinum‐based DSSCs, but lower cost. Furthermore, DSSC based on flexible CNT/Pt hybrid CE using indium‐doped tin oxide‐coated polyethylene terephthalate as the substrate also exhibits η=8.43 % with Jsc=16.85 mA cm?2, Voc=780 mV, and FF=0.64, and this shows great potential in developing highly efficient flexible DSSCs.  相似文献   

9.
In dye‐sensitized solar cells (DSSCs), a significant dye‐regeneration force (ΔGreg0≥0.5 eV) is usually required for effective dye regeneration, which results in a major energy loss and limits the energy‐conversion efficiency of state‐of‐art DSSCs. We demonstrate that when dye molecules and redox couples that possess similar conjugated ligands are used, efficient dye regeneration occurs with zero or close‐to‐zero driving force. By using Ru(dcbpy)(bpy)22+ as the dye and Ru(bpy)2(MeIm)23+//2+ as the redox couple, a short‐circuit current (Jsc) of 4 mA cm?2 and an open‐circuit voltage (Voc) of 0.9 V were obtained with a ΔGreg0 of 0.07 eV. The same was observed for the N3 dye and Ru(bpy)2(SCN)21+/0Greg0=0.0 eV), which produced an Jsc of 2.5 mA cm?2 and Voc of 0.6 V. Charge recombination occurs at pinholes, limiting the performance of the cells. This proof‐of‐concept study demonstrates that high Voc values can be attained by significantly curtailing the dye‐regeneration force.  相似文献   

10.
A general and convenient strategy is proposed for enhancing photovoltaic performance of aqueous dye‐sensitized solar cells (DSCs) through the surface modification of titania using an organic alkyl silane. Introduction of octadecyltrichlorosilane on the surface of dyed titania photoanode as an organic barrier layer leads to the efficient suppression of electron recombination with oxidized cobalt species by restricting access of the cobalt redox couple to the titania surface. The champion ODTS‐treated aqueous DSCs (0.25 mM ODTS in hexane for 5 min) exhibit a Voc of 821±4 mV and Jsc of 10.17±0.21 mA cm?2, yielding a record PCE of 5.64±0.10 %. This surface treatment thus serves as a promising post‐dye strategy for improving the photovoltaic performance of other aqueous DSCs.  相似文献   

11.
Three electron donor‐?? bridge‐electron acceptor (D‐π‐A) organic dyes bearing two carboxylic acid groups were applied to dye‐sensitized solar cells (DSSC) as sensitizers, in which one triphenylamine or modified triphenylamine and two rhodanine‐3‐acetic acid fragments act as D and A, respectively. It was found that the introduction of t‐butyl or methoxy group in the triphenylamine subunit could lead to more efficient photoinduced intramolecular charge transfer, thus improving the overall photoelectric conversion efficiency of the resultant DSSC. Under global AM 1.5 solar irradiation (73 mW·cm?2), the dye molecule based on methoxy‐substituted triphenylamine achieved the best photovoltaic performance: a short circuit photocurrent density (Jsc) of 12.63 mA·cm?2, an open circuit voltage (Voc) of 0.55 V, a fill factor (FF) of 0.62, corresponding to an overall efficiency (η) of 5.9%.  相似文献   

12.
A series of organic dyes were prepared that displayed remarkable solar‐to‐energy conversion efficiencies in dye‐sensitized solar cells (DSSCs). These dyes are composed of a 4‐tert‐butylphenylamine donor group (D), a cyanoacrylic‐acid acceptor group (A), and a phenylene‐thiophene‐phenylene (PSP) spacer group, forming a D‐π‐A system. A dye containing a bulky tert‐butylphenylene‐substituted carbazole (CB) donor group showed the highest performance, with an overall conversion efficiency of 6.70 %. The performance of the device was correlated to the structural features of the donor groups; that is, the presence of a tert‐butyl group can not only enhance the electron‐donating ability of the donor, but can also suppress intermolecular aggregation. A typical device made with the CB‐PSP dye afforded a maximum photon‐to‐current conversion efficiency (IPCE) of 80 % in the region 400–480 nm, a short‐circuit photocurrent density Jsc=14.63 mA cm?2, an open‐circuit photovoltage Voc=0.685 V, and a fill factor FF=0.67. When chenodeoxycholic acid (CDCA) was used as a co‐absorbent, the open‐circuit voltage of CB‐PSP was elevated significantly, yet the overall performance decreased by 16–18 %. This result indicated that the presence of 4‐tert‐butylphenyl substituents can effectively inhibit self‐aggregation, even without CDCA.  相似文献   

13.
Four new type II organic dyes with D‐π‐A structure (donor‐π‐conjugated‐acceptor) and two typical type II sensitizers based on catechol as reference dyes are synthesized and applied in dye sensitized solar cells (DSCs). The four dyes can be adsorbed on TiO2 through hydroxyl group directly. Electron injection can occur not only through the anchoring group (hydroxyl group) but also through the electron‐withdrawing group (? CN) located close to the semiconductor surface. Experimental results show that the type II sensitizers with a D‐π‐A system obviously outperform the typical type II sensitizers providing much higher conversion efficiency due to the strong electronic push‐pull effect. Among these dyes, LS223 gives the best solar energy conversion efficiency of 3.6%, with Jsc=7.3 mA·cm?2, Voc=0.69 V, FF=0.71, the maximum IPCE value reaches 74.9%.  相似文献   

14.
In this study, two new benzotriazole (BTz) and dithienothiophene (DTT) containing conjugated polymers were synthesized. After successful characterizations of the monomers by proton‐nuclear magnetic resonance (1H NMR) and carbon‐NMR (13C NMR) techniques, poly(4‐(dithieno[3, 2‐b:2′,3′‐d]thiophen‐2‐yl)‐2‐(2‐octyldodecyl)‐2H‐benzo[d][1,2,3] triazole) P1 and poly(4‐(5‐(dithieno[3,2‐b:2′,3′‐d]thiophen‐2‐yl)thiophen‐2‐yl)‐2‐(2‐octyldodecyl)‐7‐(thiophen‐2‐yl)‐2H‐benzo[d][1,2,3]triazole) P2 were synthesized via a typical Stille coupling. Electrochemical and spectroelectrochemical studies showed that both polymers can be multipurpose materials and used in electrochromic and photovoltaic applications. Reported study indicated that incorporation of DTT into the structure leads to fast switching times compared with BTz‐based polymers and competent percentage transmittance in the near‐infrared region. Multichromism is important in the context of low‐cost flexible display device technology and both polymers are ambipolar and processable as well as multichromic. Throughout the preliminary photovoltaic studies, the best performances of photovoltaic devices were found as Voc = 0.49 V, Jsc = 0.83 mA/cm2, fill factor (FF) = 34.4%, and power conversion efficiency (PCE) = 0.14% for P1 , and as Voc = 0.35 V, Jsc = 1.57 mA/cm2, FF = 38.2%, and PCE = 0.21% for P2 . © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

15.
A series of new push–pull organic dyes ( BT‐I – VI ), incorporating electron‐withdrawing bithiazole with a thiophene, furan, benzene, or cyano moiety, as π spacer have been synthesized, characterized, and used as the sensitizers for dye‐sensitized solar cells (DSSCs). In comparison with the model compound T1 , these dyes containing a thiophene moiety between triphenylamine and bithiazole display enhanced spectral responses in the red portion of the solar spectrum. Electrochemical measurement data indicate that the HOMO and LUMO energy levels can be tuned by introducing different π spacers between the bithiazole moiety and cyanoacrylic acid acceptor. The incorporation of bithiazole substituted with two hexyl groups is highly beneficial to prevent close π–π aggregation, thus favorably suppressing charge recombination and intermolecular interaction. The overall conversion efficiencies of DSSCs based on bithiazole dyes are in the range of 3.58 to 7.51 %, in which BT‐I ‐based DSSCs showed the best photovoltaic performance: a maximum monochromatic incident photon‐to‐current conversion efficiency (IPCE) of 81.1 %, a short‐circuit photocurrent density (Jsc) of 15.69 mA cm?2, an open‐circuit photovoltage (Voc) of 778 mV, and a fill factor (ff) of 0.61, which correspond to an overall conversion efficiency of 7.51 % under standard global AM 1.5 solar light conditions. Most importantly, long‐term stability of the BT‐I – III ‐based DSSCs with ionic‐liquid electrolytes under 1000 h of light soaking was demonstrated and BT‐II with a furan moiety exhibited better photovoltaic performance of up to 5.75 % power conversion efficiency.  相似文献   

16.
Seven SGT organics dyes, containing bis‐dimethylfluoreneyl amino groups with a dialkoxyphenyl unit as an electron donor and a cyanoacrylic acid group as an anchoring group, connected with oligothiophenes, fused thiophenes and benzothiadiazoles as π‐bridges, were designed and synthesised for applications in dye‐sensitised solar cells (DSSCs). The photovoltaic performance of DSSCs based on organic dyes with oligothiophenes depends on the molecular structure of the dyes, in terms of the length change of the π‐bridging units. The best performance was found with a π‐bridge length of about 6 Å. To further enhance the photovoltaic performance associated with this concept, cyclopenta[1,2‐b:5,4‐b′]dithiophene (CPDT) and benzothiadiazole were introduced into the π‐bridge unit. As a result, the DSSC based on the organic dye containing the CPDT moiety showed the best photovoltaic performance with a short‐circuit photocurrent density (Jsc) of 14.1 mA cm?2, an open‐circuit voltage (Voc) of 0.84 V and a fill factor (FF) of 0.72, corresponding to an overall conversion efficiency (η) of 8.61 % under standard AM 1.5 irradiation.  相似文献   

17.
Four ethynylene‐containing donor‐acceptor alternating conjugated polymers P1 – P4 with 2,5‐bis(dodecyloxy) substituted phenylene or carbazole as the donor unit and benzothiadiazole (BTZ) as the acceptor unit were synthesized and used as donor polymers in bulk heterojunction polymer solar cells. The optical, electrochemical, and photovoltaic properties of these four polymers with the ethylene unit located at different positions of the polymer chains were systematically investigated. Our results demonstrated that absorption spectra and the HOMO and LUMO energy levels of polymers could be tuned by varying the position of the ethynylene unit in the polymer chains. Photovoltaic devices based on polymer/PC71BM blend films spin coated from chloroform and dichlorobenzene solutions were investigated. For all four polymers, open circuit voltages (Voc) higher than 0.8 V were obtained. P4 , with ethynylene unit between BTZ and thiophene, shows the best performance among these four polymers, with a Voc of 0.94 V, a Jsc of 4.2 mA/cm2, an FF of 0.40, and a PCE of 1.6%. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

18.
A series of three new 1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole‐based polymers such as poly[1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole] ( PTPT ), poly[1,4‐(2,5‐bis(octyloxy)phenylene)‐alt‐5,5'‐(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole)] ( PPTPT ), and poly[2,5‐(3‐octylthiophene)‐alt‐5,5'‐(1‐(2,6‐diisopropylphenyl)‐2,5‐di(2‐thienyl)pyrrole)] ( PTTPT ) were synthesized and characterized. The new polymers were readily soluble in common organic solvents and the thermogravimetric analysis showed that the three polymers are thermally stable with the 5% degradation temperature >379 °C. The absorption maxima of the polymers were 478, 483, and 485 nm in thin film and the optical band gaps calculated from the onset wavelength of the optical absorption were 2.15, 2.20, and 2.13 eV, respectively. Each of the polymers was investigated as an electron donor blending with PC70BM as an electron acceptor in bulk heterojunction (BHJ) solar cells. BHJ solar cells were fabricated in ITO/PEDOT:PSS/polymer:PC70BM/TiOx/Al configurations. The BHJ solar cell with PPTPT :PC70BM (1:5 wt %) showed the power conversion efficiency (PCE) of 1.35% (Jsc = 7.41 mA/cm2, Voc = 0.56 V, FF = 33%), measured using AM 1.5G solar simulator at 100 mW/cm2 light illumination. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

19.
This one‐pot, four‐component coupling approach (Suzuki–Miyaura coupling/C?H direct arylation/Knoevenagel condensation) was developed for the rapid synthesis of thiophene‐based organic dyes for dye‐sensitized solar cells (DSSCs). Seven thiophene‐based, organic dyes of various donor structures with/without the use of a 3,4‐ethylenedioxythiophene (EDOT) moiety were successfully synthesized in good yields based on a readily available thiophene boronic acid pinacol ester scaffold (one‐pot, 3‐step, 35–61 %). Evaluation of the photovoltaic properties of the solar cells that were prepared using the synthesized dyes revealed that the introduction of an EDOT structure beside a cyanoacrylic acid moiety improved the short‐circuit current (Jsc) while decreasing the fill factor (FF). The donor structure significantly influenced the open‐circuit voltage (Voc), the FF, and the power conversion efficiency (PCE). The use of a n‐hexyloxyphenyl amine donor, and our originally developed, rigid, and nonplanar donor, both promoted good cell performance (η=5.2–5.6 %).  相似文献   

20.
Thieno[3,4‐c]pyrrole‐4,6‐dione‐based organic sensitizers with triphenylamine ( FNE38 and FNE40 ) or julolidine ( FNE39 and FNE41 ) as electron‐donating unit have been designed and synthesized. A linear hexyl group or a branched alkyl chain, the 2‐ethylhexyl group, is incorporated into molecular skeleton of the dyes to minimize intermolecular interactions. The absorption, electrochemical, and photovoltaic properties for these sensitizers were then systematically investigated. It is found that the sensitizers have similar photophysical and electrochemical properties, such as absorption spectra and energy levels, owing to their close chemical structures. However, the quasi‐solid‐state dye‐sensitized solar cells (DSSCs) based on the two types of sensitizers exhibit very different performance parameters. Upon the incorporation of the short ethyl group on the hexyl moiety, enhancements in both open‐circuit voltage (Voc) and short‐circuit current (Jsc) are achieved for the quasi‐solid‐state DSSCs. The Voc gains originating from the suppression of charge recombination were quantitatively investigated and are in good agreement with the experimentally observed Voc enhancements. Therefore, an enhanced solar energy conversion efficiency (η) of 6.16 %, constituting an increase by 23 %, is achieved under standard AM 1.5 sunlight without the use of coadsorbant agents for the quasi‐solid‐state DSSC based on sensitizer FNE40 , which bears the branched alkyl group, in comparison with that based on FNE38 carrying the linear alkyl group. This work presents a design concept for considering the crucial importance of the branched alkyl substituent in novel metal‐free organic sensitizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号