首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Three polymer-amphiphile complexes were prepared by combining poly(allylamine hydrochloride)(PAH) with the potassium salt of mono-,di-,and trisubstituted benzoic acid dendrons(4-octyloxybenzoic acid,3,5-dioctyloxybenzoic acid,and 3,4,5- trioctyloxybenzoic acid).The solid structure and properties were monitored with FT-IR,XRD,TG,DSC,and polarized optical microscope(POM).Difference in the tail chain number of the dendritic amphiphile induced two different mesomorphous structures: lamella for the mono-,disubstituted dendron containing complexes and hexagonal column for the trisubstituted dendron containing complexes.These corresponded to the ionic thermotropic liquid crystal SmA andΦ_h phases,respectively.This finding is significant for design of functional nanostructures based on the ionic complexation of polymers and amphiphiles.  相似文献   

2.
It is found herein that topology of amphiphiles immobilized on a porous solid of poly(high internal phase emulsion) (HIPE and polyHIPE) is critical to extraction pollutants from water. N‐alkylation of branched polyethylenimine (bPEI) with a glycidyl‐capped polymer of poly(styrene‐co ?2‐ethylhexyl acrylate) [P(S‐EHA)] results in a dendritic amphiphile of bPEI@P(S‐EHA), and a comb‐like counterpart (lPEI@P(S‐EHA) is similarly prepared by replacing bPEI with a linear PEI (lPEI). Each amphiphile can act as a stabilizer to directly prepare polyHIPE whose surface is dictated by the respective amphiphile. It is found that bPEI@P(S‐EHA)‐dictated polyHIPE can be over 50‐fold stronger to eliminate anionic dyes from water than the linear counterpart, indicating a significant topological effect. The optimized adsorbent is over 10,000‐fold stronger to bind a dye than a representative adsorbent, thus may deal with trace pollutants in water. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1294–1302  相似文献   

3.
PS‐b‐PCL block copolymer is used to study its influence on the phase evolution of epoxy resin/polyetherimides (PEI) blends cured with methyl tetrahydrophthalic anhydride. The effect of PS‐b‐PCL on the reaction‐induced phase separation of the thermosetting/thermoplastic blends is studied via optical microscopy, scanning electron microscope, and time‐resolved light scattering. The results show that secondary phase separation and typical phase inverted morphologies are obtained in the epoxy/PEI blends with addition of PS‐b‐PCL. It can be attributed to the preferential location of the PS‐b‐PCL in the epoxy‐rich phase, which enhances the viscoelastic effect of epoxy/PEI system and leads to a dynamic asymmetry system between PEI and epoxy. The PS‐b‐PCL block copolymer plays a critical role on the balance of the diffusion and geometrical growth of epoxy molecules. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1395–1402  相似文献   

4.
Self‐assembled lamellar mesophases were observed in complexes (PEI(OA)x) of branched poly(ethyleneimine) (PEI) with octadecanoic acid (OA). The packing mode of alkyl tails between neighboring PEI layers varies from interdigitation (x ⩽ 1.02) to end‐to‐end (x ⩾ 1.17). A fractional increase in the trans conformation of alkyl chains for PEI(OA)x with small x causes an increase in the lamellar spacing of alkyl tails. Macrophase separation of excess free OA from complexes occurs when x is larger than 1.64.  相似文献   

5.
Thermotropic POSS‐containing poly(methacrylate) with long alkyl chain tethered polyhedral oligomeric silsesquioxane (POSS) in the side chain and the block copolymers (PMMA‐b‐PMAC11POSS) were developed by through living anionic polymerization. The resulting polymers indicated a phase transition temperature at 112 °C from spherocrystal to isotropic phase. The POSS‐containing polymer segments tended to form matrix of microphase‐separated nanostructures in the bulk even in the very low volume fraction, for instance, PMMA cylindrical nanostructure was obtained by PMMA175b‐PMAC11POSS11 (?PMAC11POSS = 0.44). The control of thin film morphology was carried out by not only solvent annealing, but also thermal annealing, resulting in the formation of well‐ordered dot‐ and fingerprint‐type nanostructures. This is the first report in a series of POSS‐containing block polymers that are capable for thermal annealing to generate well‐ordered microphase‐separated nanostructures in thin films. The novel thermotropic POSS‐containing block copolymer offers a promising material for block copolymer lithography. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
Polymeric drug delivery system termed as “polyprodrug amphiphile” poly(2‐methylacryloyloxyethyl phosphorylcholine)‐b‐poly(10‐hydroxy‐camptothecin methacrylate (pMPC‐b‐pHCPT) is developed for the prolonged‐acting cancer therapy. It is obtained by two‐step reversible addition–fragmentation chain transfer polymerization of zwitterionic monomer MPC and an esterase‐responsive polymerizable prodrug methacrylic anhydride–CPT, respectively. This diblock polymer is composed of both antifouling (pMPC) and bioactive (pHCPT) segments and the drug is designed as a building block to construct the polymer skeleton directly. Due to its distinct amphiphilicity, the polymer can self‐assemble into micelles with different dynamic sizes by facilely tuning the ratio of MPC/HCPT under physiological conditions. The outer pMPC shell is superhydrophilic to form dense hydrate layer preventing the nanosystem from unwanted nonspecific protein adsorption, which is the main lead cause of the rapid clearance of nanoparticles in vivo, thus facilitating the accumulation of drugs in tumor sites via enhanced permeability and retention effect. The configuration of the polyprodrug amphiphile is confirmed by several measurements. The resistance to albumin adsorption, prolonged plasma retention time, accumulation in tumor sites, and anticancer activity of the micelles is also investigated in vitro and in vivo. This novel amphiphile can be expected as a promising agent for the passive targeted prolonged‐acting cancer therapy.  相似文献   

7.
Monomeric zinc(II) and mercury(II) complexes containing tripodal nitrogen donor ligand 2,6‐bis(3,4,5‐trimethyl‐N‐pyrazolyl)pyridine (btmpp) were synthesized, and characterized by elemental and spectroscopic (IR, UV/Vis) analyses, TG‐DTA and single‐crystal X‐ray diffraction studies. X‐ray analyses of the complexes [Zn(btmpp)Cl2] ( 2 ) and [Hg(btmpp)(SCN)2] ( 3 ) showed that both structures crystallize in space group P21/c with a = 7.9722(6), b = 18.3084(13), c = 13.3117(9) Å and Z = 4 for 2 and a = 8.7830(3), b = 21.1489(7), c = 12.0682(4) Å and Z = 4 for 3 . Both monomeric units contain pentacoordinate metal ions in distorted square‐pyramidal arrangement. The structures of complexes 2 and 3 were also computed with DFT methods at B3LYP/LanL2DZ level and are in good agreement with the experimental values obtained from X‐ray analysis. The NPa charge distributions, HOMO–LUMO gaps, and dipole moments for 1 , 2 , and 3 were also reported. Natural bond orbital analyses were performed to reveal local charges and charge transfers in 1 , 2 , and 3 .  相似文献   

8.
Summary: Supramolecular interaction of fully methylated hyperbranched polyethylenimines (PEI) with a mesogen‐based carboxylic acid, 5‐(p‐cyanobiphenoxy)pentanoic acid, results in the formation of supramolecular complexes exhibiting thermotropic liquid crystalline (LC) mesophases. In contrast to the common smectic mesophases of most dendritic LC polymers, nematic LC phases were observed. The complexation of PEI and the mesogen units is due to electrostatic interaction between the carboxylate groups and the ammonium end groups of PEI. LC properties were investigated by a combination of differential scanning calorimetry, polarizing light optical microscopy, and X‐ray diffractometry.

Schematic illustration of the supramolecular assembly of CBPA with PEIMe backbone.  相似文献   


9.
Summary: The 3,4‐ethylenedioxythiophene (EDOT) monomer in a chiral nematic liquid‐crystal electrolyte was polymerized by application of a voltage to yield a thin film. Circular dichroism measurements indicated a Cotton effect for the film. Optical texture suggests that the polymer shows a finger‐print texture and a spiral texture similar to that of the chiral nematic phase. This simple method provides a new technique for preparing chiral conducting films in a thermotropic chiral liquid‐crystal field.

Optical micrograph of (R)‐PEDOT* (no polarizer).  相似文献   


10.
Novel porphyrin derivatives with twelve flexible alkyl chains, namely meso‐tetra[4‐(3,4,5‐n‐trialkoxybenzoylamino)phenyl]porphyrins (1a, n = 12; 1b, n = 16) and the zinc complex (2a) were synthesized. The mesomorphic properties were investigated by DSC, WAXD and polarizing optical microscopy; the results showed that 1a and 2a exhibit a pseudo‐hexagonal columnar phase, and 1b a rectangular (Col) phase over a wide temperature range including room temperature.  相似文献   

11.
The phase behavior of block copolymer based supramolecular complexes polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) and amphiphilic pentadecylphenol (PDP) molecules resembles the phase behavior of conventional block copolymers. Several PS‐b‐P4VP(PDP) complexes are found to self‐assemble into gyroid nanostructures. Typically, the grains are randomly oriented with a maximal size of several micrometers. Here, the orientation of a gyroid PS‐b‐P4VP(PDP) complex upon shearing is reported. It is found that the (111) gyroid lattice direction orients parallel to the shear direction after only several seconds of large amplitude oscillatory shearing. Oriented gyroid complexes can be used as templates for the preparation of metal nanofoams with improved ordering with potentially superior properties.

  相似文献   


12.
Three ternary rare earth [NdIII ( 1 ), SmIII ( 2 ) and YIII ( 3 )] complexes based on 3‐[(4,6‐dimethyl‐2‐pyrimidinyl)thio]‐propanoic acid (HL) and 1,10‐phenanthroline (Phen) were synthesized and characterized by IR and UV/Vis spectroscopy, TGA, and single‐crystal X‐ray diffraction. The crystal structures showed that complexes 1 – 3 contain dinuclear rare earth units bridged by four propionate groups and are of general formula [REL3(Phen)]2 · nH2O (for 1 and 2 : n = 2; for 3 : n = 0). All rare earth ions are nine‐coordinate with distorted mono‐capped square antiprismatic coordination polyhedra. Complex 1 crystallizes in the monoclinic system, space group P21/c with a = 16.241(7) Å, b = 16.095(7) Å, c = 19.169(6) Å, β = 121.48(2)°. Complex 2 crystallizes in the monoclinic system, space group P21/c with a = 16.187(5) Å, b = 16.045(4) Å, c = 19.001(4) Å, β = 120.956(18)°. Complex 3 crystallizes in the triclinic system, space group P1 with a = 11.390(6) Å, b = 13.636(6) Å, c = 15.958(7) Å, α = 72.310(17)°, β = 77.548(15)°, γ = 78.288(16)°. The antioxidant activity test shows that all complexes own higher antioxidant activity than free ligands.  相似文献   

13.
A series of novel amphiphilic brush‐dendritic‐linear poly[poly(ethylene glycol) methyl ether methacrylate]‐b‐polyamidoamine‐b‐poly(ε‐caprolactone) copolymers (PPEGMEMA‐b‐Dmb‐PCL) (m = 1, 2, and 3: the generation number of dendron) were synthesized by the combination techniques of click chemistry, atom transfer radical polymerization (ATRP), and ring‐opening polymerization (ROP). The brush‐dendritic copolymers bearing hydrophilic brush PPEGMEMA and hydrophobic dendron polyamidoamine protected by the tert‐butoxycarbonyl (Boc) groups [Dm‐(Boc) (m = 1, 2, and 3)] were for the first time prepared by ATRP of poly(ethylene glycol) methyl ether methacrylate monomer (PEGMEMA) initiated with the dendron initiator, which was prepared from 2′‐azidoethyl‐2‐bromoisobutyrate (AEBIB) and Dm‐(Boc) terminated with a clickable alkyne by click chemistry. Then, the brush‐dendritic copolymers with primary amine groups (PPEGMEMA‐b‐Dm) were obtained from the removal of the protected Boc groups of the brush‐dendritic copolymers in the presence of trifluoroacetic acid. The brush‐dendritic‐linear PPEGMEMA‐b‐Dmb‐PCL copolymers were synthesized from ROP of ε‐caprolactone monomer using PPEGMEMA‐b‐Dm as the macroinitiators and stannous octoate as catalyst in toluene at 130 °C. To the best of our knowledge, this is the first report that integrates hydrophilic brush polymer PPEGMEMA with hydrophobic polyamidoamine (PAMAM) dendron and PCL to form amphiphilic brush‐dendritic‐linear copolymers. The amphiphilic brush‐dendritic‐linear copolymers can self‐assemble into spherical micellar structures in aqueous solution. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
A new ternary potassium cobalt stannide, K13CoSn17–x (x = 0.1), was obtained by reacting the mixture of the corresponding pure elements at high temperature, and structurally characterized by single‐crystal X‐ray diffraction study. K13CoSn17–x (x = 0.1) crystallizes in the orthorhombic space group Pbca (No. 61) with a = 26.2799(7) Å, b = 24.1541(6) Å, c = 29.8839(6) Å, V = 18969.3(8) Å3, and Z = 16. Its structure contains isolated [CoSn9] monocapped square antiprism and [Sn4] tetrahedron in the ratio 1:2, forming a hierarchical variant of Laves phase MgZn2. The structural relation between the title compound with MgZn2 as well as other binary stannides is also discussed.  相似文献   

15.
Gene delivery is now a part of the therapeutic arsenal for vaccination and treatments of inherited or acquired diseases. Polymers represent an opportunity to develop new synthetic vectors for gene transfer, with a prerequisite of improved delivery and reduced toxicity compared to existing polymers. Here, the synthesis in a two-step's procedure of linear poly(ethylenimine-b-2-isopropyl-2-oxazoline) block copolymers with the linear polyethylenimine (lPEI) block of various molar masses is reported; the molar mass of the poly(2-isopropyl-2-oxazoline) (PiPrOx) block has been set to 7 kg mol−1. Plasmid DNA condensation is successfully achieved, and in vitro transfection efficiency of the copolymers is at least comparable to that obtained with the lPEI of same molar mass. lPEI-b-PiPrOx block copolymers are however less cytotoxic than their linear counterparts. PiPrOx can be a good alternative to PEG which is often used in drug delivery systems. The grafting of histidine moieties on the lPEI block of lPEI-b-PiPrOx does not provide any real improvement of the transfection efficiency. A weak DNA condensation is observed, due to increased steric hindrance along the lPEI backbone. The low cytotoxicity of lPEI-b-PiPrOx makes this family a good candidate for future gene delivery developments.  相似文献   

16.
Structure and morphology development during the isothermal crystallization and subsequent melting of syndiotactic polypropylene (sPP) was studied with differential scanning calorimetry (DSC), time‐resolved simultaneous small‐angle X‐ray scattering (SAXS), and wide‐angle X‐ray diffraction (WAXD) methods with synchrotron radiation. The morphology of sPP isothermally crystallized at 100 °C for 3 h was also characterized with transmission electron microscopy (TEM). Time‐ and temperature‐dependent parameters such as the long period (L), crystal lamellar thickness (lc), amorphous layer thickness (la), scattering invariant (Q), crystallinity (Xc), lateral crystal sizes (L200 and L010), and unit cell dimensions (a and b) were extracted from the SAXS and WAXD data. Results indicate that the decreases in L and lc with time are probably due to the formation of thinner crystal lamellae, and the decreases in a and b are due to crystal perfection. The changes in the morphological parameters (Q, Xc, L, and lc) during subsequent melting exhibited a two‐stage process that was consistent with the multiple melting peaks observed in DSC. The two high‐temperature peaks can be attributed to the melting of primary lamellae (at lower temperatures) and recrystallized lamellae (at higher temperatures). An additional minor peak, located at the lowest temperature, was also visible and was related to the melting of thin and defective secondary lamellae. TEM results are consistent with the SAXS data, which supports the assignment of the larger value (l1) from the correlation function analysis as lc. WAXD showed that the thermal expansion was greater along the b axis than the a axis during melting. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2982–2995, 2001  相似文献   

17.
Two new oxidovanadium (IV) complexes: TpVO(L1) ( 1 ) and Tp*VO(pzH*)(L2) ( 2 ) [Tp = hydrotris(pyrazolyl)borate, HL1 = 5‐methyl‐1H‐pyrazole‐3‐carboxylic acid, Tp* = hydrotris(3,5‐dimethylpyrazolyl)borate, pzH* = 3,5‐dimethylpyrazole, HL2 = 5‐phenyl‐1H‐pyrazole‐3‐carboxylic acid] have been synthesized and characterized by elemental analysis and IR spectroscopy. The single‐crystal structures of the complexes shows that the vanadium ion is in a distorted octahedral environment with a N4O2 donor set in each complex. Additionally, hydrogen bonding interaction exits in both complexes. Interestingly, the molecules of 1 are held together to form a 1D hydrogen bonded polymer along the b axis, whereas complex 2 is a hydrogen bonded dimer. In addition, the catalytic activities of complexes 1 and 2 in bromination reactions in phosphate buffer with phenol red as a trap were evaluated primary by UV/Vis spectroscopy. Furthermore, ab initio calculations of complexes 1 and 2 were performed.  相似文献   

18.
We report the first instance of facile synthesis of dumbbell‐shaped dendritic‐linear‐dendritic triblock copolymer, [G‐3]‐PNIPAM‐[G‐3], consisting of third generation poly(benzyl ether) monodendrons ([G‐3]) and linear poly(N‐isopropylacrylamide) (PNIPAM), via reversible addition‐fragmentation chain transfer (RAFT) polymerization. The key step was the preparation of novel [G‐3]‐based RAFT agent, [G‐3]‐CH2SCSSCH2‐[G‐3] (1), from third‐generation dendritic poly(benzyl ether) bromide, [G‐3]‐CH2Br. Due to the bulky nature of [G‐3]‐CH2Br, its transformation into trithiocarbonate 1 cannot go to completion, a mixture containing ~80 mol % of 1 and 20 mol % [G‐3]‐CH2Br was obtained. Dumbbell‐shaped [G‐3]‐PNIPAM310‐[G‐3] triblock copolymer was then successfully obtained by the RAFT polymerization of N‐isopropylacylamide (NIPAM) using 1 as the mediating agent, and trace amount of unreacted [G‐3]‐CH2Br was conveniently removed during purification by precipitating the polymer into diethyl ether. The dendritic‐linear‐dendritic triblock structure was further confirmed by aminolysis, and fully characterized by gel permeation chromatography (GPC) and 1H‐NMR. The amphiphilic dumbbell‐shaped triblock copolymer contains a thermoresponsive PNIPAM middle block, in aqueous solution it self‐assembles into spherical nanoparticles with the core consisting of hydrophobic [G‐3] dendritic block and stabilized by the PNIPAM central block, forming loops surrounding the insoluble core. The micellar properties of [G‐3]‐PNIPAM310‐[G‐3] were then fully characterized. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1432–1445, 2007  相似文献   

19.
Poly(ethylene imine)‐graft‐poly(ethylene oxide) (PEI‐g‐PEO) copolymers were synthesized via Michael addition reaction between acryl‐terminated poly(ethylene oxide) methyl ether (PEO) and poly(ethylene imine) (PEI). The brush‐like copolymers were characterized by means of Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. It is found that the crystallinity of the PEO side chains in the copolymers remained unaffected by the PEI backbone whereas the crystal structure of PEO side chains was altered to some extent by the PEI backbone. The crystallization behavior of PEO blocks in the copolymers suggests that the bush‐shaped copolymers are microphase‐separated in the molten state. The PEO side chains of the copolymers were selectively complexed with α‐cyclodextrin (α‐CD) to afford hydrophobic side chains (i.e., PEO/α‐CD inclusion complexes). The X‐ray diffraction (XRD) shows that the inclusion complexes (ICs) of the PEO side chains displayed a channel‐type crystalline structure. It is identified that the stoichiometry of the inclusion complexation of the PEI‐g‐PEO with α‐CD is close to that of the control PEO with α‐CD. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2296–2306, 2008  相似文献   

20.
The synthesis of 2‐ethynyl‐9‐substituted carbazole and 3‐ethynyl‐9‐substituted carbazole monomers containing first‐generation chiral and achiral dendritic (i.e., minidendritic) substituents, 2‐ethynyl‐9‐[3,4,5‐tris(dodecan‐1‐yloxy)benzyl]carbazole (2ECz), 3‐ethynyl‐9‐[3,4,5‐tris(dodecan‐1‐yloxy)benzyl]carbazole (3ECz), 2‐ethynyl‐9‐{3,4,5‐tris[(S)‐2‐methylbutan‐1‐yloxy]benzyl}carbazole (2ECz*), and 3‐ethynyl‐9‐{3,4,5‐tris[(S)‐2‐methylbutan‐1‐yloxy]benzyl}carbazole (3ECz*), is presented. All monomers were polymerized and copolymerized by stereospecific polymerization to produce cis‐transoidal soluble stereoisomers. A structural analysis of poly(2ECz), poly(2ECz*), poly(3ECz), poly(3ECz*), poly(2ECz*‐co‐2ECz), and poly(3ECz*‐co‐3ECz) by a combination of techniques, including 1H NMR, ultraviolet–visible, and circular dichroism spectroscopy, thermal optical polarized microscopy, and X‐ray diffraction experiments, demonstrated that these polymers had a helical conformation that produced cylindrical macromolecules exhibiting chiral and achiral nematic phases. Individual chains of these cylindrical macromolecules were visualized by atomic force microscopy. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3509–3533, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号