首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
A dual stimuli‐responsive (pH and thermo) polyethylene terephthalate (PET) track‐etched membrane has been prepared using atom transfer radical polymerization (ATRP). First, ATRP initiator 2‐bromoisobutyryl bromide was anchored onto the membrane surface. Then, 2‐hydroxyethyl‐methacrylate (HEMA) and N‐isopropylacrylamide (NIPAAm) were grafted onto the membrane surface using ATRP. X‐ray photoelectron spectroscopy, ATR‐Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetric analysis were used to characterize the membrane structure and thermal properties; water flux measurement was used to investigate the double stimuli‐responsive property of the obtained membrane. The results indicate that the PHEMA and PNIPAAm binary grafted PET track‐etched membrane has double environmental responsiveness. This method provides a potential modification method for preparing functional membranes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
This work reports the surface‐initiated atom transfer radical polymerization (ATRP) from hydrogen plasma‐treated porous poly(tetrafluoroethylene) (PTFE) membranes using the C? F groups as initiators. Hydrogen plasma treatment on PTFE membrane surfaces changes their chemical environment through defluorination and hydrogenation reactions. With the hydrogen plasma treatment, the C? F groups of the modified PTFE membrane surface become effective initiators of ATRP. Surface‐initiated ATRP of poly(ethylene glycol) methacrylate (PEGMA) is carried out to graft PPEGMA chains to PTFE membrane surfaces. The chain lengths of poly(PEGMA) (PPEGMA) grafted on PTFE surfaces increase with increasing the reaction time of ATRP. Furthermore, the chain ends of PPEGMA grown on PTFE membrane surfaces then serve as macroinitiators for the ATRP of N‐isopropylacrylamide (NIPAAm) to build up the PPEGMA‐b‐PNIPAAm block copolymer chains on the PTFE membrane surfaces. The chemical structures of the modified PTFE membranes are characterized using X‐ray photoelectron spectroscopy. The modification increases the surface hydrophilicity of the PTFE membranes with reductions in their water‐contact angles from 120° to 60°. The modified PTFE membranes also show temperature‐responsive properties and protein repulsion features owing to the presence of PNIPAAM and PPEGMA chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2076–2083, 2010  相似文献   

3.
Poly(vinylidene fluoride) (PVDF) is known for its biocompatibility, piezo and pyro‐electricity, and membrane forming capability. In order to tune its properties, modification through grafting from approach by atom transfer radical polymerization (ATRP) is preferred. Hydrophilic polymers like poly(ethylene glycol) methacrylate, poly(methacrylic acid), poly(dimethylaminoethyl methacrylate) (PDMAEMA), and so forth have been anchored from PVDF backbone in order to make permeation of water molecules through the PVDF based membranes. The successful solution grafting of PDMAEMA chains from PVDF backbone by ATRP resulted appreciable graft conversion and hence its bulk properties showed a significant change. This water soluble graft copolymer shows incredible mechanical and adhesive properties. PVDF‐g‐poly(n‐butyl methacrylate) generates honey‐comb porous film using “breath figure” technique. Recently, they have used further improvement of grafting where model ATRP initiators are anchored using atom transfer radical coupling and used them as macroinitiators for grafting. This approach simplified the grafting reactions even more and enabled successful grafting of a large number of monomers under relatively less drastic conditions with appreciable conversion compared with the previous conditions. This technique has resulted interesting solution properties, ion and electron conducting PVDF, antifouling membrane, super glue and super tough materials, capable of generating metal nanoparticles tunable with pH and temperature. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2569–2584  相似文献   

4.
pH‐sensitive poly (vinylidene fluoride) (PVDF)/poly (acrylic acid) (PAA) microgels membranes are prepared by phase inversion of the N, N‐dimethylformamide solution containing PAA microgels and PVDF in aqueous solution. The composition and structure of the blend membrane are investigated by Fourier transform infrared spectra, X‐ray photoelectron spectroscopy measurements, thermo gravimetric analysis, field‐emission scanning electron microscope and atomic force microscope. The results indicate the surface and cross section of the blend membranes have a porous structure with PAA microgels immobilized inside the pore and on the membrane surface. The blend PVDF membranes exhibit pH‐sensitive water flux, with the most drastic change in permeability observed between pH 3.7 and 6.3. The blend membranes are fouled by bovine serum albumin, and their antifouling property is enhanced by increasing PAA microgels, mainly derived from the improved hydrophilic property. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
We describe the synthesis of three novel thermoresponsive copolymers of acrylonitrile (AN) with N‐isopropylacrylamide (NIPAM) by a combination of reversible addition‐fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP). Linear copolymer polyacrylonitrile (PAN)‐b‐PNIPAM was directly prepared by RAFT polymerization. Comb‐like copolymers were synthesized by ATRP using brominated AN/2‐hydroxyethyl methacrylate copolymers as macroinitiators, which were prepared by RAFT polymerization. FT‐IR, NMR, and GPC were employed to characterize the synthesized copolymers. Results indicate that the polymerization processes can be well controlled and the resultant copolymers have well‐defined structures as well as narrow polydispersity. Then dense films were fabricated from these thermoresponsive copolymers and the surface wettability was evaluated by water contact angle measurements at different temperatures. It is found that the surface wettability is temperature‐dependant and both the transition temperature and decrement of water contact angle are affected by the copolymer shapes as well as the length of PNIPAM blocks. Considering the excellent fiber‐ and membrane‐forming properties of PAN‐based copolymers, the obtained thermoresponsive copolymers are latent materials for functional fibers and membranes. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 92–102, 2009  相似文献   

6.
《中国化学》2017,35(7):1109-1116
We fabricate a novel cellulose acetate (CA) ultrafiltration membrane modified by block copolymer F127‐b‐ PDMAEMA, which is synthesized using F127 and DMAEMA via the ARGET ATRP method. Compared to conventional ultrafiltration membranes, the incorporation of both F127 and PDMAEMA can not only readily increase the hydrophilicity of the membrane, but also exhibit stimuli‐responsiveness to temperature and pH. Fourier transform infrared spectroscopy (FT‐IR), nuclear magnetic resonance spectroscopy (NMR), and gel permeation chromatography (GPC) are employed to analyze the structure of the F127‐b‐PDMAEMA. The membrane properties are evaluated via scanning electron microscope (SEM) imaging, porosity test, automatic target recognition Fourier transform infrared spectroscopy (ATR‐FTIR), water contact angle test and permeation test. The results indicate that the F127‐b‐PDMAEMA is an excellent pore agent, which contributes to an enhancement of the membrane in sensitivity to temperature and pH. The modified membrane also exhibits lower water contact angle (64.5°), which is attributed to the good anti‐fouling performance and high water permeation.  相似文献   

7.
This paper presents lipophilicity and bio‐mimetic property determination of 15 phytoestrogens, namely biochanin A, daidzein, formononetin, genistein, genistein‐4,7‐dimethylether, prunetin, 3,4,7‐trihydroxyisoflavon, 4,6,7‐trihydroxyisoflavon, 4,6,7‐trimethoxyisoflavon, daidzin, genistin, ononin, sissotrin, coumestrol and coumestrol dimethylether. High‐performance liquid chromatography with fast gradient elution and Caco‐2 cell line were used to determine the physicochemical properties of selected phytoestrogens. Lipophilicity was determined on octadecyl‐sylane stationary phase using pH 2.0 and pH 7.4 buffers. Immobilized artificial membrane chromatography was used for prediction of interaction with biological membranes. Protein binding was measured on human serum albumin and α‐1‐acid‐glycoprotein (AGP) stationary phases. Caco‐2 assay was used as a gold standard for assessing in vitro permeability. The obtained results differentiate phytoestrogens according to their structure where aglycones show significantly higher lipophilicity, immobilized artificial membrane partitioning, AGP binding and Caco‐2 permeability compared with glucosides. However, human serum albumin binding was very high for all investigated compounds. Furthermore, a good correlation between experimentally obtained chromatographic parameters and in silico prediction was obtained for lipophilicity and human serum albumin binding, while the somewhat greater difference was obtained for AGP binding and Caco‐2 permeability.  相似文献   

8.
Summary: Organic‐inorganic hybrid materials consisting of nanosized silica particles with surface grafted PS or PS‐b‐PMMA were synthesized using ATRP. These hybrid materials were used in the fabrication of highly‐ordered isoporous membranes. Optical characterization revealed that the membranes consisted of hexagonally ordered pores of uniform size. The combination of an open pore structure and high surface area makes isoporous membranes into materials of high interest in fields as biotechnology and photonics.

Image from optical microscope of hybrid nanoparticle membrane of SiO2g‐PS with hexagonally‐ordered pores.  相似文献   


9.
In the present study, modification of nanoparticles (NPs) was investigated to mitigate aggregation of SiO2 nanoparticles and improve the polymeric membrane's performance. For this purpose, the surface of SiO2 nanoparticles was activated with amine groups, and polymethacrylic acid (PMAA) was grafted on the surface of NPs by atom transfer radical polymerization. Modified NPs were characterized by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) tests. Polyethersulfone (PES) membranes were fabricated with both SiO2 and SiO2‐g‐PMAA NPs via nonsolvent‐induced phase separation method. The fabricated membranes were characterized regarding their permeability, hydrophilicity, and porosity properties, and their separation efficiency was tested using the synthetic oil‐in‐water emulsion. The surface and cross‐sectional morphologies of membranes were observed by field emission scanning electron microscopy (FESEM). The experimental trials showed that modified NPs dispersed more uniformly in the structure of membranes and hydroxyl groups on the surface of NPs acted more effectively. Modification of NPs enhance the membrane performance in terms of permeate flux, hydrophilicity, and porosity. NPs modification improved the permeate flux about 46%. Oil rejection for all tested membranes was more than 98%, and modification of NPs did not reduce the rejection of membranes. The optimum concentration was obtained as 1 wt.% and 1.5 wt.% for SiO2 and SiO2‐g‐PMAA, respectively. Aggregation effect dominated at concentrations beyond the optimum values that decreased the permeate flux, consequently.  相似文献   

10.
Surface-initiated atom transfer radical polymerization (ATRP) was used to graft hydrophilic comb-like poly((poly(ethylene glycol) methyl ether methacrylate), or P(PEGMA), brushes from chloromethylated poly(phthalazinone ether sulfone ketone) (CMPPESK) membrane surfaces. Prior to ATRP, chloromethylation of PPESK was beforehand performed and the obtained CMPPESK was prepared into porous membranes by phase inversion process. It was demonstrated that the benzyl chloride groups on the CMPPESK membrane surface afforded effective macroinitiators to graft the well-defined polymer brushes. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the grafting of P(PEGMA) chains. Water contact angle measurements indicated that the introduction of P(PEGMA) graft chains promoted remarkably the surface hydrophilicity of PPESK membranes. The effects of P(PEGMA) immobilization on membrane morphology, permeability and fouling resistance were investigated. It was found that the comb-like P(PEGMA) grafts brought smaller pore diameters and higher solute rejections to PPESK membranes. The results of dynamic anti-fouling experiments showed the anti-fouling ability of the membranes was significantly improved after the grafting of P(PEGMA) brushes.  相似文献   

11.
《先进技术聚合物》2018,29(1):623-631
In this study, poly(1‐butyl‐3‐vinylimidazolium bromide) (PBVIm‐Br) was grafted onto the poly(vinyl chloride) (PVC) membrane surface via a 2‐step atom transfer radical polymerization (ATRP) reaction. Poly(2‐hydroxyethylmethacrylate) (PHEMA) was grafted onto the membrane surface by aqueous ATRP reaction; then, BVIm‐Br was introduced onto the surface of the PHEMA‐modified PVC membrane through traditional ATRP reaction. The analysis of surface chemistry confirmed the successful grafting of PHEMA and PBVIm‐Br on PVC membrane surface, and the grafting density (GD) of PBVIm‐Br gradually increased as the grafting time was prolonged. The modified membrane exhibited a positive charge and significantly enhanced surface hydrophilicity. The static water contact angle of the membrane surface decreased from 92.3° to 51.6° as the GD of the PBVIm‐Br brushes increased. Filtration experiments indicated that the water flux of the modified membrane increased with increasing GD, and their recovered fluxes were more than twice than the original. In addition, the total fouling ratio of the membranes decreased from 89% in M0 to 67% in M5, and most of the fouling was reversible as the GD of PBVIm‐Br brushes increased. These results indicated that the positive charged poly(ionic liquid) brushes featuring hydrophilic properties would have potential applications in membrane separation.  相似文献   

12.
Summary: A general mathematical model has been developed to describe the surface initiated photopolymerization of PEG‐DA forming crosslinked hydrogel membranes upon the surface of a substrate. Such membranes are formed by photopolymerizing a PEG‐DA prepolymer solution by initiation with eosin‐Y‐functionalized surfaces and TEA using VP as accelerator. Experimental measurements of the thickness of hydrogel membranes compare well with the model. The model is developed by using the pseudo‐kinetic approach and the method of moments, and is capable of predicting the crosslink density and thickness of the hydrogel membrane. Parametric sensitivity of the effects of PEG‐DA, VP and coinitiator TEA concentration towards the crosslink density and the thickness of the hydrogel is also investigated. The results obtained for different PEG‐DA and VP concentrations suggest that the concentration ratio of these two monomers is a key parameter in controlling the gel thickness and permeability. This model can also be applied to systems where drugs, proteins or cells are encapsulated through surface initiated photopolymerization to predict the growth and crosslink density profiles of the encapsulating membrane. In a previous study we have experimentally demonstrated that these membranes could be made to attach covalently to the surface of the underlying substrate.

Comparison of experimental measurements and model simulation of PEG‐DA hydrogel membrane thickness versus laser duration at high PEG‐DA concentrations.  相似文献   


13.
Materials with Janus structures are attractive for wide applications in materials science. Although extensive efforts in the synthesis of Janus particles have been reported, the synthesis of sub‐10 nm Janus nanoparticles is still challenging. Herein, the synthesis of Janus gold nanoparticles (AuNPs) based on interface‐directed self‐assembly is reported. Polystyrene (PS) colloidal particles with AuNPs on the surface were prepared by interface‐directed self‐assembly, and the colloidal particles were used as templates for the synthesis of Janus AuNPs. To prepare colloidal particles, thiol‐terminated polystyrene (PS‐SH) was dissolved in toluene and citrate‐stabilized AuNPs were dispersed in aqueous solution. Upon mixing the two solutions, PS‐SH chains were grafted to the surface of AuNPs and amphiphilic AuNPs were formed at the liquid–liquid interface. PS colloidal particles decorated with AuNPs on the surfaces were prepared by adding the emulsion to excess methanol. On the surface, AuNPs were partially embedded in the colloidal particles. The outer regions of the AuNPs were exposed to the solution and were functionalized through the grafting of atom‐transfer radical polymerization (ATRP) initiator. Poly[2‐(dimethamino)ethyl methacrylate] (PDMAEMA) on AuNPs were prepared by surface‐initiated ATRP. After centrifugation and dissolving the colloidal particles in tetrahydrofuran (THF), Janus AuNPs with PS and PDMAEMA on two hemispheres were obtained. In acidic pH, Janus AuNPs are amphiphilic and are able to emulsify oil droplets in water; in basic pH, the Janus AuNPs are hydrophobic. In mixtures of THF/methanol at a volume ratio of 1:5, the Janus AuNPs self‐assemble into bilayer structures with collapsed PS in the interiors and solvated PDMAEMA at the exteriors of the structures.  相似文献   

14.
A series of gradient and block copolymers, based on 2‐(2‐methoxyethoxy)ethyl methacrylate (MEO2MA) and tert‐butyl acrylate (tBA), were synthesized by atom transfer radical polymerization (ATRP) in a first step. The MEO2MA monomer leads to the production of thermosensitive polymers, exhibiting lower critical solution temperature (LCST) at around room temperature, which could be adjusted by changing the proportion of tBA in the copolymer. In a second step, the tert‐butyl groups of tBA were hydrolyzed with trifluoroacetic acid to form the corresponding block and gradient copolymers of MEO2MA and acrylic acid (AA), which exhibited both temperature and pH‐responsive behavior. These copolymers showed LCST values strongly dependent on the pH. At acid pH, a slightly decrease of LCST with an increase of AA in the copolymer was observed. However, at neutral or basic conditions, ionization of acid groups increases the hydrophilic balance considerably raising the LCST values, which even become not observable over the temperature range under study. In the last step, these carboxylic functionalized copolymers were covalently bound to biocompatible and biodegradable films of poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) [P(HB‐co‐HHx)] obtained by casting and, previously treated with ethylenediamine (ED) to render their surfaces with amino groups. Thereby, thermosensitive surfaces of modified P(HB‐co‐HHx) could be obtained. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
A series of amphiphilic graft copolymers consisting of poly(vinyl chloride) (PVC) main chains and poly(vinyl pyrrolidone) (PVP) side chains, i.e. PVC‐g‐PVP, was synthesized via atom transfer radical polymerization (ATRP), as confirmed by 1H NMR, FT‐IR spectroscopy, and gel permeation chromatography (GPC). Transmission electron microscope (TEM) and small angle X‐ray scattering (SAXS) analysis revealed the microphase‐separated structure of PVC‐g‐PVP and the domain spacing increased from 21.4 to 23.9 nm with increasing grafting degree. All the membranes exhibited completely amorphous structure and high Young's modulus and tensile strength, as revealed by wide angle X‐ray scattering (WAXS) and universal testing machine (UTM). Permeation experimental results using a CO2/N2 (50/50) mixture indicated that as an amount of PVP in a copolymer increased, CO2 permeability increased without the sacrifice of selectivity. For example, the CO2 permeability of PVC‐g‐PVP with 36 wt% of PVP at 35°C was about four times higher than that of the pristine PVC membrane. This improvement resulted from the increase of diffusivity due to the disruption of chain packing in PVC by the grafting of PVP, as confirmed by WAXS analysis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Polymers consisting of poly(acrylic acid) (PAA) and statistical poly[(acrylic acid)‐co‐(tert‐butylacrylate)] (P(AA‐cotBA)), attached to both extremities of Jeffamine® (D series based on a poly(propylene oxide) (PPO) with one amine function at each end) using atom transfer radical polymerization (ATRP) are presented in this article. An original bifunctional amide‐based macroinitiator was first elaborated from Jeffamine®. tBA polymerization was subsequently initiated from this macroinitiator. This polymerization occurs in a well‐controlled manner leading to narrow molecular weights distribution. Amphiphilic copolymers were finally obtained after complete or partial hydrolysis of the PtBA blocks into PAA. The control of the partial hydrolysis of tBA units, conducted in a concentrated HCl/tetrahydrofuran mixture, is demonstrated. The properties of the triblock copolymers were preliminary investigated in aqueous solution by absorbance, DLS measurements and SEC/MALS/DV/DRI analysis as a function of temperature and pH modifications, providing evidences of thermo‐ and pH‐sensitive self‐assembly of the copolymers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2606–2616  相似文献   

17.
PVDF/(PEI‐C/PAA)n functional membranes were prepared by layer‐by‐layer (LbL) assembly, and their heavy metal ions adsorption capability was investigated. The changes in the chemical compositions of membrane surfaces were determined by X‐ray photoelectron spectroscopy (XPS). XPS results show that the surface of the PVDF membrane can be alternatively functionalized by PEI‐C and PAA. The membrane surface hydrophilicity was evaluated through water contact angle measurement. Contact angle results show that the surface hydrophilicity of the membrane surface depends on the outermost deposited layer. Morphological changes of membrane surfaces were observed by scanning electron microscopy (SEM). The water fluxes for these membranes were elevated after modification. The performances of the PVDF/(PEI‐C/PAA)n membranes on the adsorption of copper ions (Cu2+) from aqueous solutions were investigated by inductively coupled plasma (ICP). The results indicate that the PVDF/(PEI‐C/PAA)n functional membranes show high copper ions adsorption ability. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The combination of atom transfer radical polymerization (ATRP) and click chemistry has created unprecedented opportunities for controlled syntheses of functional polymers. ATRP of azido‐bearing methacrylate monomers (e.g., 2‐(2‐(2‐azidoethyoxy)ethoxy)ethyl methacrylate, AzTEGMA), however, proceeded with poor control at commonly adopted temperature of 50 °C, resulting in significant side reactions. By lowering reaction temperature and monomer concentrations, well‐defined pAzTEGMA with significantly reduced polydispersity were prepared within a reasonable timeframe. Upon subsequent functionalization of the side chains of pAzTEGMA via Cu(I)‐catalyzed azide‐alkyne cycloaddition (CuAAC) click chemistry, functional polymers with number‐average molecular weights (Mn) up to 22 kDa with narrow polydispersity (PDI < 1.30) were obtained. Applying the optimized polymerization condition, we also grafted pAzTEGMA brushes from Ti6Al4 substrates by surface‐initiated ATRP (SI‐ATRP), and effectively functionalized the azide‐terminated side chains with hydrophobic and hydrophilic alkynes by CuAAC. The well‐controlled ATRP of azido‐bearing methacrylates and subsequent facile high‐density functionalization of the side chains of the polymethacrylates via CuAAC offers a useful tool for engineering functional polymers or surfaces for diverse applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1268–1277  相似文献   

19.
In this article, we demonstrate that hydrogel‐based composite membranes are used as semipermeable materials for the construction of photobioreactors (PBRs). PBRs are developed to culture microalgae using nutrients dissolved in seawater, and thus they need to be fabricated with membranes possessing sufficient material‐transport properties. While hydrogels are characterized by their highly swelling nature in water and therefore have desirable transport of dissolved matter, they lack the mechanical strength to be cast into thin structures of large surface area. This issue motivated us to design a new concept, i.e., fabric‐hydrogel composite membranes ( FHCM s). A cotton fabric inside the hydrogel matrix endows the composite with tensile strength, which enables casting of FHCM s into thin membranes. Several FHCM s were prepared with 2‐hydroxyethyl methacrylate ( HEMA ), cross‐linking poly(ethylene glycol) dimethacrylate ( PEGDMA ) and a sheet of gauze by controlling the composition of the monomers and water. In the permeability measurement of nitrate ions, a key ingredient for the growth of microalgae, the permeability coefficient reached as high as 1.2 x 10?8 m2 min?1, which is roughly three times higher than that of a commercially available semipermeable membrane (3.3 x 10?9 m2 min?1). In the following evaluation of microalgal culture, a PBR constructed with a FHCM was able to maintain sufficient ion concentration and pH of the culture broth, supporting microalgal growth. These results suggest that the composite membranes with hydrogel and fabric have potential in the application of microalgal culture for bio‐diesel production in a marine environment. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 108–114  相似文献   

20.
A series of novel phenolphthalein‐containing sulfonated poly(arylene ether phosphine oxide)s (sPAEPP) with various sulfonation degrees were synthesized by direct polycondensation. The structure of sPAEPP was confirmed by 1H‐NMR, 13C‐NMR, and IR spectroscopy. The high‐molecular weight of these polymers was determined by gel permeation chromatography (GPC). The transparent, tough, and flexible membranes could be achieved by solution casting. The macroscopic properties and microstructure of the obtained membranes were investigated in detail. The results showed that these sPAEPP membranes displayed excellent properties in terms of swelling, proton conductivity, and methanol permeability. For example, sPAEPP‐100 membrane exhibited an appropriate water uptake of 33.1%, a swelling ratio of only 11.7% (lower than 20.1% of Nafion 117), a proton conductivity of 0.11 S cm?1 (similar to that of Nafion 117) at 80 °C, and a methanol permeability of 4.82 × 10?7 cm2 s?1. Meanwhile, it also presented outstanding oxidative stability. Atomic force microscope (AFM) micrographs showed that the hydrophilic domains of the sPAEPP‐100 membrane formed connected and narrow ionic channels, which contributed to its high proton conductivity and good dimensional stability. As a result, sPAEPP‐100 membrane displays excellent application prospect for fuel cells. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1097–1104  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号