首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
{There exist precisely 149 topological types of semipolytopal tile-transitive tilings of E 3 by ``extetrahedra' (obtained from tetrahedra by introducing certain new vertices of degree 2 ). Dualization gives rise to 149 types of 4-regular vertex-transitive tilings. The 4-coordinated networks carried by these tilings are closely related to crystal structures such as zeolites or diamond. These results are obtained using ``combinatorial tiling theory.'} Received February 12, 1999, and in revised form September 21, 1999. Online publication May 15, 2000.  相似文献   

2.
General methods for finding tile-k-transitive tilings of the three-dimensional Euclidean space with polyhedral bodies are discussed. Analogous methods for enumerating k-isohedral tilings of a two-dimensional plane of constant curvature have been obtained previously.  相似文献   

3.
Two different methods for enumerating k-isohedral tilings are discussed. One is geometric: by splitting and gluing tiles. The other is combinatorial: by enumerating the appropriate Delaney—Dress symbols. Both methods yield 1270 types of proper 2-isohedral tilings of the plane.  相似文献   

4.
We consider self-affine tiling substitutions in Euclidean space and the corresponding tiling dynamical systems. It is well known that in the primitive case, the dynamical system is uniquely ergodic. We investigate invariant measures when the substitution is not primitive and the tiling dynamical system is non-minimal. We prove that all ergodic invariant probability measures are supported on minimal components, but there are other natural ergodic invariant measures, which are infinite. Under some mild assumptions, we completely characterize σ-finite invariant measures which are positive and finite on a cylinder set. A key step is to establish recognizability of non-periodic tilings in our setting. Examples include the “integer Sierpiński gasket and carpet” tilings. For such tilings, the only invariant probability measure is supported on trivial periodic tilings, but there is a fully supported σ-finite invariant measure that is locally finite and unique up to scaling.  相似文献   

5.
The Banach spaces l(Γ) admit tilings by balls of equal size that are arranged along a lattice. We present classes of bounded sets in spaces l(Γ) whose optimal packings and covers in the sense of inner and outer metric entropy numbers are realized by lattice arrangements. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim  相似文献   

6.
The number of domino tilings of a region with reflective symmetry across a line is combinatorially shown to depend on the number of domino tilings of particular subregions, modulo 4. This expands upon previous congruency results for domino tilings, modulo 2, and leads to a variety of corollaries, including that the number of domino tilings of a k × 2k rectangle is congruent to 1 mod 4.  相似文献   

7.
   Abstract. There is a growing body of results in the theory of discrete point sets and tiling systems giving conditions under which such systems are pure point diffractive. Here we look at the opposite direction: what can we infer about a discrete point set or tiling, defined through a primitive substitution system, given that it is pure point diffractive? Our basic objects are Delone multisets and tilings, which are self-replicating under a primitive substitution system of affine mappings with a common expansive map Q . Our first result gives a partial answer to a question of Lagarias and Wang: we characterize repetitive substitution Delone multisets that can be represented by substitution tilings using a concept of ``legal cluster.' This allows us to move freely between both types of objects. Our main result is that for lattice substitution multiset systems (in arbitrary dimensions), being a regular model set is not only sufficient for having pure point spectrum—a known fact—but is also necessary. This completes a circle of equivalences relating pure point dynamical and diffraction spectra, modular coincidence, and model sets for lattice substitution systems begun by the first two authors of this paper.  相似文献   

8.
Abstract. Tilings of R 2 can display hierarchy similar to that seen in the limit sequences of substitutions. Self-similarity for tilings has been used as the standard generalization, but this viewpoint is limited because such tilings are analogous to limit points of constant-length substitutions. To generalize limit points of non-constant-length substitutions, we define hierarchy for infinite, labelled graphs, then extend this definition to tilings via their dual graphs. Examples of combinatorially substitutive tilings that are not self-similar are given. We then find a sufficient condition for detecting combinatorial hierarchy that is motivated by the characterization by Durand of substitutive sequences. That characterization relies upon the construction of the ``derived sequence'—a recoding in terms of reappearances of an initial block. Following this, we define the ``derived Vorono? tiling'—a retiling in terms of reappearances of an initial patch of tiles. Using derived Vorono? tilings, we obtain a sufficient condition for a tiling to be combinatorially substitutive.  相似文献   

9.
   Abstract. Given an m × n rectangular mesh, its adjacency matrix A , having only integer entries, may be interpreted as a map between vector spaces over an arbitrary field K . We describe the kernel of A : it is a direct sum of two natural subspaces whose dimensions are equal to
and
, where c = gcd (m+1,n+1) - 1 . We show that there are bases to both vector spaces, with entries equal to 0,1 and -1 . When K = Z/(2), the kernel elements of these subspaces are described by rectangular tilings of a special kind. As a corollary, we count the number of tilings of a rectangle of integer sides with a specified set of tiles.  相似文献   

10.
   Abstract. Tilings of R 2 can display hierarchy similar to that seen in the limit sequences of substitutions. Self-similarity for tilings has been used as the standard generalization, but this viewpoint is limited because such tilings are analogous to limit points of constant-length substitutions. To generalize limit points of non-constant-length substitutions, we define hierarchy for infinite, labelled graphs, then extend this definition to tilings via their dual graphs. Examples of combinatorially substitutive tilings that are not self-similar are given. We then find a sufficient condition for detecting combinatorial hierarchy that is motivated by the characterization by Durand of substitutive sequences. That characterization relies upon the construction of the ``derived sequence'—a recoding in terms of reappearances of an initial block. Following this, we define the ``derived Vorono? tiling'—a retiling in terms of reappearances of an initial patch of tiles. Using derived Vorono? tilings, we obtain a sufficient condition for a tiling to be combinatorially substitutive.  相似文献   

11.
For every positive integer r, there exist pairs of prototiles which admit exactly r distinct tilings of the plane. Furthermore, there exist pairs of prototiles which admit a countable infinity of distinct tilings.  相似文献   

12.
Abstract. There is a growing body of results in the theory of discrete point sets and tiling systems giving conditions under which such systems are pure point diffractive. Here we look at the opposite direction: what can we infer about a discrete point set or tiling, defined through a primitive substitution system, given that it is pure point diffractive? Our basic objects are Delone multisets and tilings, which are self-replicating under a primitive substitution system of affine mappings with a common expansive map Q . Our first result gives a partial answer to a question of Lagarias and Wang: we characterize repetitive substitution Delone multisets that can be represented by substitution tilings using a concept of ``legal cluster.' This allows us to move freely between both types of objects. Our main result is that for lattice substitution multiset systems (in arbitrary dimensions), being a regular model set is not only sufficient for having pure point spectrum—a known fact—but is also necessary. This completes a circle of equivalences relating pure point dynamical and diffraction spectra, modular coincidence, and model sets for lattice substitution systems begun by the first two authors of this paper.  相似文献   

13.
We use the self-similar tilings constructed in (Pearse in Indiana Univ. Math J. 56(6):3151–3169, 2007) to define a generating function for the geometry of a self-similar set in Euclidean space. This tubularzeta function encodes scaling and curvature properties related to the complement of the fractal set, and the associated system of mappings. This allows one to obtain the complex dimensions of the self-similar tiling as the poles of the tubularzeta function and hence develop a tube formula for self-similar tilings in ℝd. The resulting power series in εis a fractal extension of Steiner’s classical tube formula for convex bodies K⊆ℝ d . Our sum has coefficients related to the curvatures of the tiling, and contains terms for each integer i=0,1,…,d−1, just as Steiner’s does. However, our formula also contains a term for each complex dimension. This provides further justification for the term “complex dimension”. It also extends several aspects of the theory of fractal strings to higher dimensions and sheds new light on the tube formula for fractals strings obtained in (Lapidus and van Frankenhuijsen in Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings, 2006).  相似文献   

14.
We introduce a family of planar regions, called Aztec diamonds, and study tilings of these regions by dominoes. Our main result is that the Aztec diamond of order n has exactly 2 n(n+1)/2 domino tilings. In this, the first half of a two-part paper, we give two proofs of this formula. The first proof exploits a connection between domino tilings and the alternating-sign matrices of Mills, Robbins, and Rumsey. In particular, a domino tiling of an Aztec diamond corresponds to a compatible pair of alternating-sign matrices. The second proof of our formula uses monotone triangles, which constitute another form taken by alternating-sign matrices; by assigning each monotone triangle a suitable weight, we can count domino tilings of an Aztec diamond.  相似文献   

15.
Summary For every k2 and r1 there exists a set of k prototiles that admits exactly r distinct tilings. All the tilings obtained are periodic.  相似文献   

16.
We fix two rectangles with integer dimensions. We give a quadratic time algorithm which, given a polygon F as input, produces a tiling of F with translated copies of our rectangles (or indicates that there is no tiling). Moreover, we prove that any pair of tilings can be linked by a sequence of local transformations of tilings, called flips. This study is based on the use of Conway’s tiling groups and extends the results of Kenyon and Kenyon (limited to the case when each rectangle has a side of length 1).  相似文献   

17.
An Aztec diamond of rank n is a rhombus of side length n on the square grid. We give several new combinatorial proofs of known theorems about the numbers of domino tilings of diamonds and squares. We also prove generalizations of these theorems for the generating polynomials of some statistics of tilings. Some results here are new. For example, we describe how to calculate the rank of a tiling using special weights of edges on the square grid. Bibliography: 17 titles. Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 360, 2008, pp. 180–230.  相似文献   

18.
A polynomial time algorithm is given for deciding, for a given polyomino P , whether there exists an isohedral tiling of the Euclidean plane by isometric copies of P . The decidability question for general tilings by copies of a single polyomino, or even periodic tilings by copies of a single polyomino, remains open. Received June 23, 1997, and in revised form April 6, 1998.  相似文献   

19.
Given a tiling T, one may form a related tiling, called the derived Voronoi tiling of T, based on a patch of tiles in T. Similarly, for a tiling space X, one can identify a patch which appears regularly in all tilings in X, and form a derived Voronoi space of tilings, based on that patch.  相似文献   

20.
Recently, Benjamin, Plott, and Sellers proved a variety of identities involving sums of Pell numbers combinatorially by interpreting both sides of a given identity as enumerators of certain sets of tilings using white squares, black squares, and gray dominoes. In this article, we state and prove q-analogues of several Pell identities via weighted tilings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号