首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Phenolic microspheres were obtained by condensation of resorcinol and formaldehyde via a novel water/“water” suspension polymerization (WWSP) system, which was proposed and constructed for the first time. Resorcinol/formaldehyde aqueous solutions, ammonium sulfate aqueous solution, hydroxyethyl cellulose (HEC), and sodium hydroxyl were employed as water phase, “water” phase, stabilizer for protecting colloid, and catalyst, respectively. Stable and perfect phenolic microspheres were prepared in this special WWSP system. Particle sizes, size distribution, as well as morphology of microspheres were investigated by scanning electron microscope and computerized image analysis program. The results showed that particle size increased from 0.38 to 2.22 µm along with the increase of concentration of ammonium sulfate in “water” phase from 1.5% to 12.5% and the ratio of resorcinol to formaldehyde from 1:1.5 to 1:4. On the contrary, the particle size decreased from 1.80 to 0.30 µm with the increase of the amount of HEC from 0.1 to 1.0 g and amount of catalyst from 0.05 to 0.2 g. The polydispersity index value of the resulting microspheres is quite narrow, ranging from 1.01 to 1.30, which meant that the morphology of phenolic microspheres was unique. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Photoinitiated dispersion polymerization of methyl methacrylate was carried out in a mixture of ethanol and water as dispersion medium in the presence of poly(N‐vinylpyrrolidone) (PVP) as the steric stabilizer and Darocur 1173 as photoinitiator. 93.7% of conversion was achieved within 30 min of UV irradiation at room temperature, and microspheres with 0.94 μm number–average diameter and 1.04 polydispersity index (PDI) were obtained. X‐ray photoelectron spectroscope (XPS) analysis revealed that only parts of surface of the microspheres were covered by PVP. The particle size decreased from 2.34 to 0.98 μm as the concentration of PVP stabilizer increased from 2 to 15%. Extra stabilizer (higher than 15%) has no effect on the particle size and distribution. Increasing medium polarity or decreasing monomer and photoinitiator concentration resulted in a decrease in the particle size. Solvency of reaction medium toward stabilizer, which affects the adsorption of stabilizer on the particle surface, was shown to be crucial for controlling particle size and uniformity because of the high reaction rate in photoinitiated dispersion polymerization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1329–1338, 2008  相似文献   

3.
The TEMPO‐mediated polymerization of styrene in the presence of camphorsulfonic acid (CSA) is carried out using controlled radical dispersion polymerization. In the absence of TEMPO and CSA, 92% of conversion was achieved within 3 h of polymerization. When TEMPO is solely used, broadening of particle size with narrow PDI was observed because of the prolonged polymerization time. However, when 1:1 molar ratio of CSA/TEMPO was added, the fairly monodisperse PS microspheres having 5.83 μm average size and 3.42% CV (coefficient of variation) were successfully achieved because of the narrow molecular weight of intermediate oligomers and shortening of the polymerization time. This result obviously indicates that the addition of CSA in TEMPO‐mediated dispersion polymerization not only shortens the polymerization time but also greatly improves the uniformity of the microspheres. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 62–68, 2006  相似文献   

4.
The copolymer microspheres of styrene (St) and maleic anhydride (MA) were synthesized by stabilizer‐free dispersion polymerization, and the polymerization process was explored in detail. The results showed that the homopolymerization of St formed in initial polymerization period served as stabilizer, and reaction solvent of closer solubility parameter would benefit the stabilizer‐free dispersion polymerization. In addition, some principal factors affecting the microspheres size, such as reaction time, reaction temperature, monomer concentration, molar feed ratio, reaction media, and cosolvent, were investigated as well. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

5.
Polystyrene microspheres have been synthesized by the reversible addition-fragmentation chain transfer (RAFT) mediated dispersion polymerization in an alcoholic media in the presence of poly(N-vinylpyrrolidone) as stabilizer and 2,2′-azobisisobutyronitrile as a conventional radical initiator. In order to obtain monodisperse polystyrene particles with controlled architecture, the post–addition of RAFT agent was employed to replace the weak point from the pre-addition of RAFT. The feature of preaddition and postaddition of RAFT agent was studied on the polymerization kinetics, particle size and its distribution and on the particle stability. The living polymerization behavior as well as the particle stability was observed only in the postaddition of RAFT. The effects of different concentration on the postaddition of RAFT agent were investigated in terms of molecular weight, molecular weight distribution, particle size and its distribution. The final polydispersity index (PDI) value, particle size and the stability of the dispersion system were found to be greatly influenced by the RAFT agent. This result showed that the postaddition of RAFT agent in the dispersion polymerization not only controls the molecular weight and PDI but also produces stable monodisperse polymer particles.  相似文献   

6.
Dispersion polymerization was applied to the controlled/living free‐radical polymerization of styrene with a reversible addition–fragmentation chain transfer (RAFT) polymerization agent in the presence of poly(N‐vinylpyrrolidone) and 2,2′‐azobisisobutyronitrile in an ethanol medium. The effects of the polymerization temperature and the postaddition of RAFT on the polymerization kinetics, molecular weight, polydispersity index (PDI), particle size, and particle size distribution were investigated. The polymerization was strongly dependent on both the temperature and postaddition of RAFT, and typical living behavior was observed when a low PDI was obtained with a linearly increased molecular weight. The rate of polymerization, molecular weight, and PDI, as well as the final particle size, decreased with an increased amount of the RAFT agent in comparison with those of traditional dispersion polymerization. Thus, the results suggest that the RAFT agent plays an important role in the dispersion polymerization of styrene, not only reducing the PDI from 3.34 to 1.28 but also producing monodisperse polystyrene microspheres. This appears to be the first instance in which a living character has been demonstrated in a RAFT‐mediated dispersion polymerization of styrene while the colloidal stability is maintained in comparison with conventional dispersion polymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 348–360, 2007  相似文献   

7.
分散聚合制备粒度均匀的聚甲基丙烯酸环氧丙酯微球   总被引:13,自引:0,他引:13  
文中描述了粒度均匀的聚甲基丙烯酸环氧丙酯微球的制备,所采用的是分散聚合方法,系统地研究了溶剂体系、单体浓度、引发剂类型与浓度、稳定剂用量、反应温度等各种聚合参数,对聚合产物粒度及其分散性的影响.在优化反应条件的基础上,制备出了微米级(1~8μm)粒度均匀性基本呈现单分散的聚合物微球.  相似文献   

8.
The use of functional groups bearing silica/poly(styrene‐co‐4‐vinylpyridine) core–shell particles as a support for a zirconocene catalyst in ethylene polymerization was studied. Several factors affecting the behavior of the supported catalyst and the properties of the resulting polymer, such as time, temperature, Al/N (molar ratio), and Al/Zr (molar ratio), were examined. The conditions of the supported catalyst preparation were more important than those of the ethylene polymerization. The state of the supported catalyst itself played a decisive role in both the catalytic behavior of the supported catalyst and the properties of polyethylene (PE). IR and X‐ray photoelectron spectroscopy were used to follow the formation of the supports. The formation of cationic active species is hypothesized, and the performance of the core–shell‐particle‐supported zirconocene catalyst is discussed as well. The bulk density of the PE formed was higher than that of the polymer obtained from homogeneous and polymer‐supported Cp2ZrCl2/methylaluminoxane catalyst systems. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2085–2092, 2001  相似文献   

9.
分散聚合法制备窄分布聚苯乙烯微球   总被引:7,自引:0,他引:7  
赵莹  张以举 《应用化学》1998,15(5):62-64
窄分布聚合物微球有相当广泛的用途,如用于色谱柱填料,过滤器效能和孔径的测定标准,生化反应的载体等[1].制备聚合物微球的方法有多种:如悬浮聚合物法可以制得微米级球体,但粒径分布较宽[2];超微乳液聚合法,却仅能制得小于1μm的超微球[3];唯有分散聚...  相似文献   

10.
The nonaqueous dispersion polymerization of styrene in methanol with poly[(4‐methylstyrene)‐co‐(4‐vinyltriethylbenzyl ammonium bromide)]‐b‐polyisobutene as a stabilizer was investigated. There was no observable inducing period or autoacceleration in the polymerization process. The conversion increased almost linearly with the polymerization time as high as 80%. The average sizes of the obtained polystyrene particles increased, and the size distributions of the polystyrene particles tended to become narrower, with increasing conversion. The mechanism of the dispersion polymerization in the presence of polyisobutene‐b‐poly[(4‐methylstyrene)‐co‐(4‐vinyltriethylbenzyl ammonium bromide)] was nucleation/growth. When the stabilizer/monomer ratio (w/w) was greater than 2.0%, the polystyrene dispersion was stable, and there was no observable polymer particle coagulation taking place during the whole polymerization process. The average diameter of the polymer particles can be mediated through changes in the polymerization conversion, monomer, and stabilizer. Nearly monodispersed polystyrene particles with average diameters of approximately 0.45–2.21 μm were obtained under optimal conditions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2678–2685, 2004  相似文献   

11.
Nonporous hydrogel microspheres 0.1–1.3 μm in diameter were prepared by the dispersion copolymerization of 1‐vinyl‐2‐pyrrolidone and ethylene dimethacrylate as a crosslinking agent. The crosslinking was evidenced by solid state 13C NMR and elemental analysis. The effect of various parameters including selection of solvent (cyclohexane, butyl acetate), initiator (4,4′‐azobis(4‐cyanopentanoic acid), 2,2′‐azobisisobutyronitrile, dibenzoyl peroxide) and stabilizer on the properties of resulting microspheres has been studied. Dynamic light scattering and photographic examination were used for determination of the diameter and polydispersity of microspheres. Increasing concentration of steric stabilizer in the initial polymerization mixture decreased the particle size. The particle size depended on the molecular weight of polystyrene‐block‐hydrogenated polyisoprene stabilizer, but not on the number of PS and polybutadiene blocks in the styrene–butadiene block copolymer stabilizers. Dibenzoyl peroxide used as an initiator resulted in agglomeration of particles. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 653–663, 2000  相似文献   

12.
Herein we report a successful dispersion polymerization of 2‐hydroxyethyl methacrylate (HEMA) in a carbon dioxide continuous phase with a block copolymer consisting of polystyrene and poly(1,1‐dihydroperfluorooctyl acrylate) as a stabilizer. Poly(2‐hydroxyethyl methacrylate) was effectively emulsified in carbon dioxide with the amphiphilic diblock copolymer surfactant, and the successful stabilization of the polymerization simultaneously gave spherical particles in the submicrometer range with relatively narrow particle size distributions. The initial concentrations of HEMA and the stabilizer and the pressure had substantial effects on the size of the colloidal particles. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3783–3790, 2000  相似文献   

13.
Crosslinked poly(2‐hydroxyethyl methacrylate)‐based magnetic microspheres were prepared in a simple one‐step procedure by dispersion polymerization in the presence of several kinds of iron oxides. Cellulose acetate butyrate and dibenzoyl peroxide were used as steric stabilizer and polymerization initiator, respectively, and ethylene dimethacrylate was a crosslinking agent. The resulting product was characterized in terms of particle size, particle size distribution, iron(III) content, and magnetic properties. In the presence of needle‐like maghemite in the polymerization mixture and under suitable conditions, magnetic microspheres with relatively narrow size distribution were formed. An increase in the particle size and, at the same time, a decrease in molecular weight of uncrosslinked polymers resulted, as the continuous phase became richer in 2‐methylpropan‐1‐ol. Coercive force of needle‐like maghemite‐containing particles was higher than that of cubic magnetite‐loaded microspheres. Coercive force increased with the decreasing iron content in the particles. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1161–1171, 2000  相似文献   

14.
A phenolic OH‐containing benzoxazine ( F‐ap ), which cannot be directly synthesized from the condensation of bisphenol F, aminophenol, and formaldehyde by traditional procedures, has been successfully prepared in our alternative synthetic approach. F‐ap was prepared by three steps including (a) condensation of 4‐aminophenol and 5,5'‐methylenebis(2‐hydroxybenzaldehyde) (1) , (b) reduction of the resulting imine linkage by sodium borohydride, and (c) ring closure condensation by formaldehyde. The key starting material, (1) , was prepared from 2‐hydroxybenzaldehyde and s‐trioxane in the presence of sulfuric acid. F‐ap is structurally similar to bis(3,4‐dihydro‐2H‐3‐phenyl‐1,3‐benzoxazinyl)methane ( F‐a, a commercial benzoxazine based on bisphenol F/aniline/formaldehyde) except for two phenolic OHs. The phenolic OHs can provide reaction sites with epoxy and 1,1'‐(methylenedi‐p‐phenylene)bismaleimide (BMI). The structure–property relationships between the thermosets of F‐ap /epoxy, F‐a /epoxy, F‐ap /BMI, and F‐a /BMI were discussed. Experimental data showed that thermosets based on F‐ap /epoxy and F‐ap /BMI provided much better thermal properties than those based on F‐a /epoxy and F‐a /BMI. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2686–2694  相似文献   

15.
We have successfully demonstrated the preparation of poly(n‐butyl acrylate)‐b‐polystyrene particles without any coagulation by two‐step emulsifier‐free, organotellurium‐mediated living radical emulsion polymerization (emulsion TERP) using poly(methacrylic acid) (PMAA)–methyltellanyl (TeMe) (PMAA30‐TeMe) (degree of polymerization of PMAA, 30) and 4,4′‐azobis(4‐cyanovaleric acid) (V‐501). The final particle size was ~30 nm and second particle nucleation was not observed throughout the polymerization. Mn increased linearly in both steps with conversion and blocking efficiency was ~75%. PDI was improved by increasing radical entry frequency into each polymer particle due to an increase of the polymerization temperature. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
Ultrafine black particles, ranging in diameter from 1 to 3 μm, were prepared by dispersion polymerization in a methanol/water mixture with vinyl monomers, nonpolymerizable Sudan black B dyes, and fluorescein isothiocyanate labeled charge control additives. Both the ratio of the methanol to the water dispersion medium and the polymeric stabilizer concentration had significant effects on the particle size. The important role of the stabilizer concentration lay in the particle formation step, during which it determined the particle stability and final particle size. These could affect the extent of the aggregation of nuclei by changing the adsorption rate of the stabilizer and the viscosity of the dispersion medium, resulting in smaller particles. The fluorescent‐labeled charge control additives strongly affected the electrophoretic mobility. A small concentration of fluorescent‐labeled charge control additives increased the electrophoretic mobility. However, a further addition reduced the electrophoretic mobility of the polymer particles. The concentration dependence of the fluorescent‐labeled charge control additives on the deposition behavior in the polymer particles was successfully imaged and thereafter quantified by image analysis. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5608–5616, 2004  相似文献   

17.
In this work, monodisperse polystyrene (PS) particles were synthesized in ethanol/water medium using sodium salt of styrene sulfonic acid and 2,2′-azobis(isobutyronitrile) as ionic comonomer and nonionic initiator, respectively. The polymerization was carried out at low agitation speed, and no stabilizer (or surfactant) was added to the polymerization medium. This polymerization system (stabilizer-free dispersion polymerization) was initiated as a homogeneous solution of monomer, comonomer, medium, and initiator. With the production of free radicals, polymerization developed into a heterogeneous system. The effect of various polymerization conditions on the size and size distribution of the obtained particles was evaluated. The experimental results showed that with an increase in ethanol content, the size of the particles increased while no significant change was observed in particle size distribution. Furthermore, with increasing ionic comonomer content, the size of the particles decreased and their size distribution became broader. Moreover, it was observed that addition of an electrolyte to the polymerization medium also increased the particles’ size and broadened their size distribution. It is noteworthy to point out that the coagulation occurred in higher amounts of electrolyte. Finally, it is concluded that the polar component of Hansen solubility parameter of the polymerization medium affects the particle size and particle size distribution greatly.  相似文献   

18.
The possibility of mesoporous acid solid as a carder for metallocene catalyst in ethylene polymerization and catalyst for polyethylene (PE) catalytic degradation was investigated. Here, HMCM-41 and AIMCM-41, and mesoporous silicoaluminophosphate molecular sieves (SAPO1 and SAPO2) were synthesized and used as acid solid. Much more gases were produced during catalytic degradation in PE/acid solid mixtures via in situ polymerization than those via physical mixing. The particle size distribution results exhibited that the particle size of SAPO1 in the PE/SAPOI mixture via in situ polymerization was about 1/14 times of that of the original SAPO1 or SAPO1-supported metallocene catalyst. This work shows a novel technology for chemical recycling of polyolefin.  相似文献   

19.
Poly(N,N‐diethylacrylamide)‐based microspheres were prepared by ammonium persulfate (APS)‐initiated and poly(vinylpyrrolidone) (PVP)‐stabilized dispersion polymerization. The effects of various polymerization parameters, including concentration of N,N′‐methylenebisacrylamide (MBAAm) crosslinker, monomer, initiator, stabilizer and polymerization temperature on their properties were elucidated. The hydrogel microspheres were described in terms of their size and size distribution and morphological and temperature‐induced swelling properties. While scanning electron microscopy was used to characterize the morphology of the microspheres, the temperature sensitivity of the microspheres was demonstrated by dynamic light scattering. The hydrodynamic particle diameter decreased sharply as the temperature reached a critical temperature ~ 30 °C. A decrease in the particle size was observed with increasing concentration of both the APS initiator and the PVP stabilizer. The microspheres crosslinked with 2–15 wt % of MBAAm had a fairly narrow size distribution. It was found that the higher the content of the crosslinking agent, the lower the swelling ratio. High concentration of the crosslinker gave unstable dispersions. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6263–6271, 2008  相似文献   

20.
In this study polymer microspheres were prepared by precipitation and dispersion polymerizations of CHPMA. The effect of polymerization solvent and type of stabilizer on the particle size, size distribution and yield was investigated. In the polymerization experiments two solvents: benzene and dipropyl ether and three stabilizers: MPEG 750, MPEG 5000, PVAc were used. The possible route to modify the surface of the microspheres to obtain epoxide groups was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号