首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A stability‐indicating MEKC method was developed and validated for the analysis of lumiracoxib (LMC) in pharmaceutical formulations using nimesulide as the internal standard (IS). Optimal conditions for the separation of LMC and degradation products were investigated. The method employed 50 mM borate buffer and 50 mM anionic detergent SDS solution at pH 9.0. MEKC method was performed on a fused‐silica capillary (50 μm id; effective length, 40 cm) maintained at 30°C. The applied voltage was 20 kV and photodiode array (PDA) detector was set at 208 nm. The method was validated in accordance with the International Conference on Harmonisation requirements. The stability‐indicating capability of the method was established by enforced degradation studies combined with peak purity assessment using PDA detection. The degradation products formed under stressed conditions were investigated by LC‐ESI‐MS and the two degraded products were identified. MEKC method was linear over the concentration range of 5–150 μg/mL (r2=0.9999) of LMC. The method was precise, accurate, with LOD and LOQ of 1.34 and 4.48 μg/mL, respectively. The robustness was proved by a fractional factorial design evaluation. The proposed MEKC method was successfully applied for the quantitative analysis of LMC in tablets to support the quality control.  相似文献   

2.
《Electrophoresis》2017,38(7):1075-1082
In this study, novel, fast, and simple methods based on RP‐HPLC and MEKC with DAD are developed and validated for the qualitative and quantitative determination of five cyclic sulfur mustard (HD) degradation products (1,4‐thioxane, 1,3‐dithiolane, 1,4‐dithiane, 1,2,5‐trithiepane, and 1,4,5‐oxadithiepane) in water samples. The HPLC method employs a C18 column and an isocratic water‐ACN (55:45, v/v) mobile phase. This method enables separation of all five cyclic compounds within 8 min. With the CE method, the baseline separation of five compounds was achieved in less than 11 min by applying a simple BGE composed of a 10 mM borate buffer and 90 mM SDS (pH 9.15). Both methods showed good linear correlation (R 2 > 0.9904). The detection limits were in the range of 0.08–0.1 μM for the HPLC method and 10–20 μM for MEKC. The precision tests resulted in RSDs for migration times and peak areas less than 0.9 and 5.5%, respectively, for the HPLC method, and less than 1.1 and 7.7% for the MEKC method, respectively. The developed methods were successfully applied to the analysis of five cyclic HD degradation products in water samples. With the HPLC method, the LODs were lowered using the SPE for sample purification and concentration.  相似文献   

3.
A stability‐indicating reverse‐phase high‐performance liquid chromatography–mass spectrometric method was developed and validated for the assay of metaxalone through forced degradation under acidic, alkaline, photo, oxidative and peroxide stress conditions. Separation of degradation products was accomplished on a reverse‐phase Phenomenex C18 (250 × 4.6 mm, 5 µm) column thermostated at 25°C using 10 mM aqueous ammonium acetate: methanol (35:65 v/v) as mobile phase in an isocratic mode of elution. The eluents were detected at 275 nm by photo diode array detector and mass detectors connected in series. Two unknown base hydrolysis products of metaxalone were identified and characterized as (a) methyl 3‐(3,5‐dimethylphenoxy)‐2‐hydroxypropylcarbamate and (b) 1‐(3,5‐dimethylphenoxy)‐3‐aminopropan‐2‐ol by MS, 1H NMR and FTIR spectroscopy. The method was validated as per International Conference on Harmonization guidelines and metaxalone was selectively determined in presence of its degradation impurities, demonstrating its stability‐indicating nature. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A validated stability‐indicating HPLC method was established, and comprehensive stress testing of ivabradine, a cardiotonic drug, was carried out as per ICH guidelines. Ivabradine was subjected to acidic, basic and neutral hydrolysis, oxidation, photolysis and thermal stress conditions, and the resulting degradation products were investigated by LC‐PDA and LC‐HR‐MS/MS. The drug was found to degrade in acid and base hydrolysis. An efficient and selective stability assay method was developed on Phenomenex Luna C18 (250 × 4.6 mm, 5.0 µm) column using ammonium formate (10 mM, pH 3.0) and acetonitrile as mobile phase at 30 °C in gradient elution mode. The flow rate was 0.7 ml/min and detection wavelength was 286 nm. A total of five degradation products (I‐1 to I‐5) were identified and characterized by LC‐HR‐MS/MS in combination with accurate mass measurements. The drug exhibited different degradation behaviour in HCl and H2SO4 hydrolysis conditions. It is a unique example where two of the five degradation products in HCl hydrolysis were absent in H2SO4 acid hydrolysis. The present study provides guidance to revise the stress test for the determination of inherent stability of drugs containing lactam moiety under hydrolytic conditions. Most probable mechanisms for the formation of degradation products have been proposed on the basis of a comparison of the fragmentation pattern of the drug and its degradation products. In silico toxicity revealed that the degradation products ( I‐2 to I‐5 ) were found to be severe irritants in case of ocular irritancy. The analytical assay method was validated with respect to specificity, linearity, range, precision, accuracy and robustness. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Two microscale separation techniques for the analysis of bioactive naphthoquinones in Eleutherine americana were developed and validated. By MEKC four compounds (eleuthoside B, isoeleutherin, eleutherol and eleutherinoside A) could be determined in plant extracts using an aqueous electrolyte solution composed of 25 mM sodium tetraborate, 50 mM sodium cholate and 20% THF. CEC on a polymeric methacrylate‐based monolith with strong cationic properties showed promising results, as it additionally enabled the separation of two enantiomers, eleutherin and isoeleutherin. The mobile phase for CEC experiments comprised 3 mM ammonium formate in a mixture of ACN and water. At an applied voltage of ?25 kV, all five markers were baseline separated in less than 12 min. Both methods were successfully validated for linearity (MEKC: R2≥0.999; CEC: R2≥0.997), sensitivity (MEKC: LOD=4–5 μg/mL; CEC: LOD=2–8 μg/mL), accuracy (MEKC: 96.5–102.7% recovery; CEC: 97.1–103.5% recovery) and precision (MEKC: σrel≤2.43%; CEC: σrel≤2.21%). The quantitative analysis of naphthoquinone derivatives in several E. americana samples showed that both methods are suitable for practical applications, because the results were well comparable to those obtained by established techniques such as HPLC.  相似文献   

6.
In this work, two stability‐indicating chromatographic methods have been developed and validated for determination of flecainide acetate (an antiarrhythmic drug) in the presence of its degradation products (flecainide impurities; B and D). Flecainide acetate was subjected to a stress stability study including acid, alkali, oxidative, photolytic and thermal degradation. The suggested chromatographic methods included the use of thin layer chromatography (TLC‐densitometry) and high‐performance liquid chromatography (HPLC). The TLC method employed aluminum TLC plates precoated with silica gel G.F254 as the stationary phase and methanol–ethyl acetate–33% ammonia (3:7:0.3, by volume) as the mobile phase. The chromatograms were scanned at 290 nm and visualized in daylight by the aid of iodine vapor. The developed HPLC method used a RP‐C18 column with isocratic elution. Separation was achieved using a mobile phase composed of phosphate buffer pH 3.3–acetonitrile–triethylamine (53:47:0.03, by volume) at a flow rate of 1.0 mL/min and UV detection at 292 nm. Factors affecting the efficiency of HPLC method have been studied carefully to reach the optimum conditions for separation. The developed methods were validated according to the International Conference on Harmonization guidelines and were applied for bulk powder and dosage form. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
A stability indicating RP-HPLC method for cephalexin has been developed and validated to identify and characterize potential degradation products. Drug was subjected to hydrolytic (acidic, basic, and neutral), oxidative, thermal, and photolytic stresses as per ICH guidelines Q1A (R2) and Q1B. Chromatographic separation was achieved on C8 column with mixture of ammonium acetate buffer pH 4.5 and acetonitrile in gradient mode as a mobile phase with PDA detection. Specificity of the method was established by peak purity studies. Method was validated as per ICH guideline Q2 (R1) for accuracy, precision, linearity, sensitivity, and robustness. Kinetics for each degradation condition was studied with respect to order of reaction and rate constant. Method was found to comply with acceptance criteria of validation parameters with respect to specificity (peak purity greater than 0.999) linearity (r 2 greater than 0.99), accuracy (% recovery in the range of 98–102%), and precision (% RSD not more than 2). A total of six degradation products were generated in different stress conditions; these were identified and structures were proposed using LC–MS/MS. Cephalexin undergoes degradation in almost all the conditions. The developed stability indicating method is suitable for analysis of stability samples as it adequately separates all degradation products. Degradation products generated in photolytic and oxidative conditions are reported for the first time.  相似文献   

8.
In the present study a novel stability‐indicating high‐performance thin‐layer chromatography (HPTLC) method for quantitative determination of silybin in bulk drug and nanoemulsion formulation has been developed and validated on silica using solvent chloroform–acetone–formic acid (9 : 2 : 1 v/v/v) (Rf of silybin 0.46 ± 0.05) in the absorbance mode at 296 nm. The method showed a good linear relationship (r2 ± 0.999) in the concentration range 25–1500 ng per spot. It was found to be linear, accurate, precise, specific, robust and stability‐indicating and can be applied for quality control and standardization of several multi‐component hepatoprotective formulations as well as for stability testing of different dosage forms. The method proposed was also used to investigate the kinetics of acidic and alkaline degradation processes by quantification of drug at different temperature to calculate the activation energy and half‐life for silymarin degradation. Copyright © 2009 John Wiley & Sons, Ltd  相似文献   

9.
A micellar electrokinetic chromatography (MEKC) method for the simultaneous determination of the antiviral drugs acyclovir and valacyclovir and their major impurity, guanine, was developed. The influences of several factors (surfactant and buffer concentration, pH, applied voltage, capillary temperature and injection time) were studied. Using tyramine hydrochloride as internal standard, the analytes were all separated in about 4 min. The separation was carried out in reversed polarity mode at 28°C, 25 kV and using hydrodynamic injection (15 s). The separation was effected in a fused‐silica capillary 100 μm × 56 cm and a background electrolyte of 20 mM citric acid–1 M Tris solution (pH 2.75), containing 125 mM sodium dodecyl sulphate and detection at 254 nm. The method was validated with respect to linearity, limit of detection and quantification, accuracy, precision and selectivity. Calibration curves were linear over the range 0.1–1 μg/mL (guanine) and from 0.1 to 120 μg/mL for both valacyclovir and acyclovir. The relative standard deviations of intra‐ and inter‐day migration times and corrected peak areas were less than 5.0%. The proposed method was successfully applied to the determination of the analytes in tablets and creams. From the previous study it is concluded that the stability‐indicating method developed for acyclovir and valacyclovir can be used for analysis of the drug in various stability samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
In this study, GC–MS‐ and MEKC‐based methods for determination of caffeine (CAF) in preworkout supplements were developed and validated. The proposed protocols utilized minimal sample preparation (simple dilution and syringe filtration). The developed methods achieved satisfactory validation parameters, i.e. good linearity (R2 > 0.9988 and R2 > 0.9985 for GC–MS‐ and MEKC‐based method, respectively), satisfactory intra‐ and interaccuracy (within 92.6–100.7% for method utilizing GC–MS and 92.1–110.3% for protocol based on MEKC) and precision (CV < 15.9% and CV < 6.3% for GC–MS‐ and MEKC‐based method, respectively) and recovery (within 100.1–100.8% for method utilizing GC–MS and 101.5–106.2% for protocol based on MEKC). The LOD was 0.03 and 3 μg/mL for method utilizing GC–MS and MEKC, respectively. The CAF concentrations determined by GC–MS‐ and MEKC‐based methods were found to be in the range of 8.53–11.23 and 8.20–11.61 μg/mL, respectively. Taking into consideration information on the labels, the investigated supplements were found to contain from 110.0 to 167.3% of the declared CAF content, which confirmed the literature reports on incompatibility of the declared product compositions with real ones. Nevertheless, the consumption of examined supplements as recommended by producers did not lead to exceeding the CAF safe limit of 400 mg per day. Additionally, the MEKC‐based method allowed for detection and identification of vitamin B3 and B6 in all of the investigated supplement samples, which demonstrated that MEKC‐based protocols may be an appropriate assays for simultaneous determination of CAF and vitamins.  相似文献   

11.
A micellar electrokinetic chromatographic and a fast reversed‐phase liquid chromatographic method have been developed for determination of the purity of phenoxymethylpenicillin. The optimized running buffer composition was 40 mM phosphate–borate–125 mM SDS–3.5% (v/v) methanol. The HPLC method employed a monolithic silica C18 column and a mobile phase composed of phosphate buffer, pH 3.5, and ACN, the flow‐rate being 3.5 mL/min. Both methods were successfully validated. Linearity, intermediate precision, limits of quantitation, accuracy, and a good correlation of the HPLC and MEKC results were demonstrated. Both methods proved to be fast and reliable and sufficiently sensitive. A combination of the two methods can be very useful in impurity profiling.  相似文献   

12.
A simple, sensitive and specific high‐performance liquid chromatography mass spectrometry (LC‐MS/MS) method was developed and validated for the quantification of β‐hydroxy‐β‐methyl butyrate (HMB) in small volumes of rat plasma using warfarin as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple reaction‐monitoring mode using the electrospray ionization technique. A simple liquid–liquid extraction process was used to extract HMB and IS from rat plasma. The total run time was 3 min and the elution of HMB and IS occurred at 1.48 and 1.75 min respectively; this was achieved with a mobile phase consisting of 0.1% formic acid in a water–acetonitrile mixture (15:85, v/v) at a flow rate of 1.0 mL/min on a Agilent Eclipse XDB C8 (150 × 4.6, 5 µm) column. The developed method was validated in rat plasma with a lower limit of quantitation of 30.0 ng/mL for HMB. A linear response function was established for the range of concentrations 30–4600 ng/mL (r > 0.998) for HMB. The intra‐ and inter‐day precision values for HMB were acceptable as per Food and Drug Administration guidelines. HMB was stable in the battery of stability studies, viz. bench‐top, autosampler freeze–thaw cycles and long‐term stability for 30 days in plasma. The developed assay method was applied to a bioavailability study in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
This research deals with the development of a stability‐indicating high‐performance liquid chromatography method for simultaneous determination of amprolium hydrochloride and ethopabate. To the best of our knowledge, no comprehensive stability‐indicating method has been reported for analysis of this mixture. Separation was achieved using Kromasil cyano column with gradient elution of the mobile phase composed of sodium hexane sulfonate solution and methanol. Quantification was based on measuring peak areas at 266 nm. Amprolium and ethopabate peaks eluted at retention times 10.42 and 18.53 min, respectively. The proposed procedure was validated with respect to system suitability, linearity, ranges, precision, accuracy, specificity, robustness, detection, and quantification limits. Linearity ranges for amprolium and ethopabate were 1.5–240 and 1–160 μg/mL, respectively. Analytes were subjected to stress conditions of hydrolysis, oxidation and thermal degradation. The proposed method enabled resolution of drugs from their forced‐degradation products and amprolium related substance (2‐picoline). Moreover, specificity was verified by resolution of the analytes from about 22 drugs used in antimicrobial veterinary products. The validated method was successfully applied to assay of the combined veterinary powder dosage form, additionally it was implemented in the accelerated stability study of the dosage form when stored for six months at 40°C and 75% relative humidity.  相似文献   

14.
In this study, we described a high‐sensitive on‐line preconcentration method for cypromazine (CYP) and melamine (MEL) analysis using cation‐selective exhaustive injection (CSEI) combined with sweeping‐MEKC. The optimum conditions of on‐line concentration and separation were discussed. The BGE contained 100 mM SDS, 50 mM phosphoric acid (pH=2.0) and 15% acetonitrile (v/v). The sample was injected at 10 kV for 600 s, separated at ?20 kV, and detected at 210 nm. The sensitivity enhancements were 6222 for CYP and 9179 for MEL. The linear dynamic ranges were 0.4?25 ng/mL for CYP (r=0.9995) and 0.2?12 ng/mL for MEL (r=0.9991). The LODs (signal‐to‐noise ratio, 3) were 43.7 and 23.4 pg/mL for CYP and MEL, respectively. The proposed method was applied to analyze CYP and MEL in dairy products pretreated using off‐line SPE to minimize the influence of the matrix. The recoveries of CYP and MEL were satisfactory (ca. 74–83%). The experimental results suggest that the CSEI‐sweeping‐MEKC method is feasible for the application to simultaneously detect trace levels of CYP and its metabolite MEL in real milk samples.  相似文献   

15.
A CZE method was developed for the simultaneous determination of 15 flavonoids, including epimedin B, epimedin A, hexandraside F, epimedin C, icariin, sagittatoside B, sagittatoside A, hexandraside E, 2′′‐O‐rhamnosyl icariside II, baohuoside VII, baohuoside I, caohuoside C, epimedoside C, baohuoside II, and kaempferol‐3‐O‐rhamnoside, in different species of Epimedium, and the effect of stability of internal standard (IS) on quantification was also investigated. As a result, rutin was not available for use as an IS because of its unstable property in sample solution, which suggested that the stability of IS both in standards and sample solution should be considered for the analysis. Using stable daidzein as IS, the analysis was performed within 35 min by using 50 mM borax buffer containing 20% ACN as a modifier (pH 10.0), while separation voltage was 25 kV and temperature was at 30°C. The method was validated to be accurate, simple, and repeatable, and was successfully applied to the analysis of 36 samples from 17 species of Epimedium.  相似文献   

16.
We developed novel stability‐indicating HPLC method for simultaneous estimation of 14 impurities in excedrin tablet, a formulation with a combination of acetaminophen, aspirin, and caffeine. In addition, a new impurity that was generated through degradation of aspirin at high temperatures during the accelerated stability conditions was positively identified and confirmed, using liquid chromatography–mass spectrometry technique. The HPLC method was optimized using the Inertsustain C18, 250 × 4.6 mm, 5.0 μm column, employing simple gradient method. Forced degradation studies were performed under acidic, basic, oxidative and thermal conditions to prove the scope and stability‐indicating the nature of the method. The optimized method was validated as per the International Conference on Harmonization guidelines. The HPLC method showed linearity from LOQ concentration to 21 μg mL?1. Precision and intermediate precision values were <5% RSD. The validated HPLC method is currently applied for the routine testing of excedrin tablet formulations in quality control laboratories.  相似文献   

17.
A highly sensitive and specific LC‐ESI‐MS/MS method has been developed and validated for simultaneous quantification of felodipine (FDP) and metoprolol (MPL) in rat plasma (50 μL) using phenacetin as an internal standard (IS) as per the FDA guidelines. Liquid–liquid extraction method was used to extract the analytes and IS from rat plasma. The chromatographic resolution of FDP, MPL and IS was achieved with a mobile phase consisting of 0.2% formic acid in water–acetonitrile (25:75, v/v) with a time program flow gradient on a C18 column. The total chromatographic run time was 4.0 min and the elution of FDP, MPL and IS occurred at 1.05, 2.59 and 1.65 min, respectively. A linear response function was established for the range of concentrations 0.59–1148 and 0.53–991 ng/mL for FDP and MPL, respectively, in rat plasma. The intra‐ and inter‐day accuracy and precision values for FDP and MPL met the acceptance as per FDA guidelines. FDP and MPL were stable in battery of stability studies viz., bench‐top, auto‐sampler and freeze–thaw cycles. The validated assay was applied to a pharmacokinetic study in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A sensitive, specific and accurate HPLC method for the quantification of rivastigmine (RSM) in rat urine was developed and validated. The method involves the simple liquid–liquid extraction of RSM and pyridostigmine as an internal standard (IS) from rat urine with tertiary methyl butyl ether. The chromatographic separation of RSM and IS was achieved with 20 mm ammonium acetate buffer (pH 6.5) and acetonitrile (65:35, v/v) delivered at flow‐rate of 1 mL/min on a Kromasil KR‐100. The method was in linear range from 50 to 5000 ng/mL. The validation was done as per FDA guidelines and the results met the acceptance criteria. The method was successfully applied for the quantification of RSM in rat urine. Besides method validation, we have identified two metabolites of RSM in urine. Both the metabolites were characterized by HPLC‐PDA and LC‐MS/MS and it was found that one metabolite is novel. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Complete resolution of hydroxyeicosatetraenoic acid (HETE) enantiomers was achieved using hydroxypropyl‐γ‐cyclodextrin (HP‐γ‐CD)‐modified MEKC. The optimum running conditions were determined to be utilizing a 30 mM phosphate–15 mM borate buffer (pH 9.0) containing 30 mM HP‐γ‐CD and 75 mM SDS as the BGE, application of +30 kV as the effective voltage, and carrying out the experiment at 15°C. The eluents were detected at 235 nm. The method was used successfully for the simultaneous separations of (S)‐ and (R)‐enantiomers of regioisomeric 8‐, 11‐, 12‐, and 15‐HETEs. Subsequently, the optimized method was applied to evaluate the stereochemistry of 8‐ and 12‐HETEs from the marine red algae, Gracilaria vermiculophylla and Gracilaria arcuata, respectively. The 8‐HETE was found to be a mixture of 98% (R)‐enantiomer and 2% (S)‐enantiomer, while the 12‐HETE was a mixture of 98% (S)‐enantiomer and 2% (R)‐enantiomer. The present study demonstrates that the HP‐γ‐CD‐modified MEKC method is simple and sensitive and provides unambiguous information on the configuration of natural and synthetic HETEs.  相似文献   

20.
A new, fast and sensitive high‐performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI‐MS/MS) method was developed and validated for isovalerylshikonin in rat plasma using emodin as internal standard (IS). The analyte was extracted from rat plasma with ethyl acetate, after 10% HCl treatment and protein precipitated by methanol. The compound was separated on an Ultimate? XB‐C18 analytical column using a mobile phase of methanol–10 mM ammonium acetate in water–acetonitrile containing 0.05% formic acid (45 : 10 : 45, v/v/v) with isogradient elution. The analyte was detected in negative ion mode using multiple‐reaction monitoring. The method was validated and the specificity, linearity, lower limit of quantitation (LLOQ), precision, accuracy, recoveries and stability were determined. LLOQ was 9 ng/mL for isovalerylshikonin. Correlation coefficient (r) value for the linear range of the analyte was greater than 0.99. The intra‐day and inter‐day precision and accuracy were better than 8.52%. The relative and absolute recovery was above 86% and no matrix effects were observed for isovalerylshikonin. This validated method provides a modern, rapid and robust procedure for the pharmacokinetic study of the two compounds in rats after intravenous administration to rats (n = 4). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号