首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A novel performance matrix, coded as LCRTM, with low cure and post‐cure temperature (≤ 200°C) for fabricating advanced polymer composites via resin transfer molding (RTM), was successfully developed, made up of 4,4′‐bismaleimidodiphenylmethane (BDM) and N‐allyl diaminodiphenylether (ADDE). Investigations show that the stoichiometry of BDM and ADDE has great effect on the processing and performance parameters of the resultant resins. In the case of the optimum formulation (the mole ratio of BDM and ADDE is 1:0.55), the injection temperature range is between 70–82°C, and the pot life at 80°C is 300 min, moreover, the cured resin has desirable thermal and mechanical properties after being cured at 200°C for 6 hr, reflecting a great potential as high performance matrices for fabricating advanced composites via the RTM technique. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
New high performance insulating composites based on hollow silica tubes (mHST) and bismaleimide/diallylbisphenol A (BDM/DBA) resin, which exhibit improved toughness, dielectric properties, and flame retardancy, were successfully developed. The effect of the amount of mHST on the properties of composites was systematically studied. Results show that the impact strength of the composite with 0.5 wt% mHST is about 2.2 times that of BDM/DBA resin. In addition, compared with BDM/DBA resin, the composites show lower and stable dielectric constant, better frequency stability of dielectric loss, significantly improved flame retardancy, and similarly outstanding thermal resistance. The reasons behind these attractive integrated properties are discussed from the view of structure–property relationship. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Supercritical carbon dioxide (ScCO2) was used as a physical foaming agent to prepare poly(vinylidene f luoride)/poly(N-vinyl pyrrolidone) (PVDF/PVP) microstructure material. The effects of foaming conditions including saturation pressure, foaming temperature and foaming time on PVDF/PVP foams morphology, thermal and electrical behavior were systematically investigated by scanning electron microscope, differential scanning calorimeter and broadband dielectric spectrometer. Small cell and low cell density were achieved at low pressure of 12 MPa, as increasing saturation pressure, the average cell size increased first, and then decreased. The competition between the cell growth and cell nucleation played an important role in average cell size, which was directly related to ScCO2 processing conditions. With increasing foaming temperature, cell size was increased and cell density was decreased, in a nearly linear manner. The variation of foaming time was considered to be closely related to the time for cells to grow. Thus, the results revealed that the average cell size enhanced with extending foaming time. The thermal properties of PVDF/PVP composites are slightly inf luenced by foaming parameters, and the dielectric constant of PVDF/PVP composite foams decreased with increasing volume expansion ratio.  相似文献   

4.
Poly(ϵ-caprolactone) was chemically modified by using dicumyl peroxide from 0.25 to 2 % (w/w) and the effects of molecular architecture on the density and morphology of PCL foams were examined. The polymer was first blended with dicumyl peroxide at a low temperature (80°C), to prevent premature peroxide decomposition. The peroxide modification was then performed at different temperatures, from 110°C to 150°C. The reaction kinetic was followed by measuring the dynamical rheological properties of the melt in isothermal experiments by using a parallel plate rheometer. The evolution of the macromolecular structure during the chemical reaction was followed by analyzing the time evolution of the complex viscosity. Foams were prepared from the peroxide modified PCL with a batch foaming process using nitrogen as the foaming agent under different process conditions. As expected, the increase of the molecular modification led to a shift towards higher temperatures of the foaming window and, moreover, influenced the viscoelastic behavior of the expanding polymeric matrix so that the final foam properties are affected.  相似文献   

5.
With the increased demand for three-dimensional (3D) printing technology in various fields, it is important to develop high-performance resin that could withstand temperature changes to expand their application potential. A new photosensitive oligomer (BDM–DDM–ETPS–GMA) based on epoxy-terminated polyether siloxane (ETPS) and bismaleimide diphenylmethane/4, 4′-diaminodiphenylmethane (BDM–DDM) resin was synthesized and then mixed with other oligomers, reactive diluents, and photoinitiators to prepare a novel 3D printing resin. The results show that the resulting resins exhibit good fluidity and rapid photopolymerization ability, which satisfies the rheological prerequisites of 3D printing resin. Moreover, the incorporation of BDM–DDM–ETPS–GMA can simultaneously improve the cryogenic stiffness and toughness of commercial resin. Specifically, the tensile strength, elongation at break, flexural strength, impact strength, and storage modulus at ?30 °C of modified resin with 15% BDM–DDM–ETPS–GMA are 151.2 MPa, 10.9%, 146.2 MPa, 9.8 kJ/m2, and 4,131 MPa, respectively, which are about 2.81, 1.70, 1.37, 1.81, and 1.54 times of that of commercial resin. A synergistic enhancement mechanism is believed to be attributed to these results, which includes the introduced flexible siloxane chain and the rigid bismaleimide structure as well as decreased cross-linking density. These attractive features of modified resins suggest that the method proposed herein is a new approach to develop high-performance 3D printing photosensitive resin simultaneously with outstanding cryogenic strength and toughness and thus has wide application potential in the aerospace, military industry, and other cutting-edge fields.  相似文献   

6.
High‐performance insulating materials have been increasingly demanded by many cutting‐edge fields. A new kind of high‐performance composites with high thermal conductivity, low coefficient of thermal expansion (CTE), and low dielectric loss was successfully developed, consisting of hexagonal boron nitride (hBN) and 2,2′‐diallylbisphenol A (DBA)‐modified 4,4′‐bismaleimidodiphenylmethane (BDM) resin. The effects of hBN and its content on the integrated properties, including curing behavior of uncured system, the CTE, thermal conductivity, dielectric properties, and thermal resistance of cured composites, are systematically investigated and discussed. Results show that there are amino groups on the surface of hBN, which supply desirable interfacial adhesion between hBN and BDM/DBA resin and a good dispersion of hBN in the resin. With the increase of the hBN content, the thermal conductivity increases linearly, whereas the CTE value decreases linearly; in addition, dielectric loss gradually decreases and becomes more stable over the whole frequency from 10 to 109 Hz. In the case of the composite with 35 wt% hBN, its thermal conductivity, CTE in glassy state, and dielectric loss are about 3.3, 0.63, and 0.5 times of the corresponding value of BDM/DBA resin, respectively. These attractive integrated properties suggest that hBN/BDM/DBA composites are high‐performance insulating materials, which show great potential in applications, especially for electronics and aerospace industries. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Poly(4‐methyl‐1‐pentene) (P4MP) was characterized to evaluate its viability as a high‐temperature dielectric film for capacitors. Detailed investigation of thermal, mechanical, rheological, and dielectric properties was carried out to assess its high‐temperature performance and processability. P4MP was melt‐processable below 270 °C without degradation and application temperatures as high as 160–190 °C can be achieved. The dielectric constant and loss of melt‐processed P4MP films was comparable to biaxially oriented polypropylene (BOPP) capacitor films, although the dielectric strength was lower. Enhancements in dielectric strength up to 250–300% were achieved via solution‐processing P4MP films, which could be easily scaled up on a roll‐to‐roll platform to yield isotropic, free‐standing films as thin as 3–5 μm. The influence of crystal structure, crystallinity, and surface morphology of these films on the dielectric properties was examined. The dielectric strength was further increased by 450% through biaxial stretching of solution‐cast films, and a Weibull breakdown field of 514 V/μm was obtained. The dielectric constant was very stable as a function of frequency and temperature and the dielectric loss was restricted to <1–2%. Overall, these results suggest that BOP4MP is a promising candidate to obtain similar energy density as a BOPP capacitor film but at much higher operating temperatures. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1497–1515  相似文献   

8.
The dielectric response of ZnO/epoxy resin nanocomposites was studied by means of dynamic electrical thermal analysis in the frequency range of 10?1 to 107 Hz, and over the temperature range of 30–160 °C, varying the content of the reinforcing phase. Scanning electron microscopy pictures were used for assessing the composites morphology and for examining the particles’ dispersion. The thermal properties of nanocomposites were examined by differential scanning calorimetry in the temperature range of 0–170 °C. Dielectric data were analyzed via dielectric permittivity and electric modulus formalisms. Recorded relaxation phenomena include contributions from both the polymeric matrix and the presence of the reinforcing phase. Processes related to the polymer matrix are attributed to the glass to rubber transition (α-relaxation) of the epoxy resin and local motions of polar side groups of the main polymer chain (β-relaxation). Finally, the slower process appearing at low frequencies and high temperatures, originates from interfacial phenomena due to the accumulation of unbounded charges at the system’s interface.  相似文献   

9.
Foamability and foam stability, emulsifying power, surface tension, and interfacial tension were investigated for Tween‐20 (polyoxyethylene sorbitan monolaurate), Tween‐60 (polyoxyethylene sorbitan monostearate), Tween‐80 (polyoxyethylene sorbitan monooleate), Arlacel‐60 (Sorbitan stearate), and Arlacel‐80 (Sorbitan oleate). Among all the surfactants tested for their foaming power and foamabilty, Arlacel‐60 and Arlacel‐80 showed the best results; the foaming power and foamability was found to be 100%. The surfactants having foam stability more than 50% can be considered as metastable and those less than 50% are considered as low‐stability foams. In case of surface tension and interfacial tension property measurements, Arlacel‐80 showed the best results. At 1% surfactant concentration, the surface tension and interfacial tension of Arlacel‐80 was found to be 29.9 dynes/cm and 1.1 dynes/cm at 30°C ambient temperature. Also, Arlacel‐60 was found to exhibit the best emulsifying power among all the surfactants tested. At 30°C, the emulsifying property of Arlacel‐60 was 6 hours.  相似文献   

10.
A high‐performance modified cyanate resin system with low injection temperature for fabricating advanced composites via resin transfer molding (RTM) was developed, which was made of bisphenol A dicyanate ester (BADCy) and diallyl phthalate (DAP). The processing characteristics, mechanical, and thermal properties of the resin were studied, and the effect of the content of DAP on the processing and performance parameters was discussed. The results show that the processing properties of the modified cyanate system are dependent on the content of DAP. All the formulations studied in this paper have good processing characteristics; their injection temperatures are between 30 and 40°C and the pot life is about 20 hr at 50°C. The cured resins exhibited good thermal stability, excellent toughness, and good hot–wet resistance, suggesting that the toughened cyanate resin is a potential high‐performance RTM matrix for advanced composites. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Bismaleimide (BMI) resins with good thermal stability, fire resistance, low water absorption, and good retention of mechanical properties at elevated temperatures, especially in hot/wet environments, have attracted more attention in the electronic and aerospace industries. However, their relatively high dielectric constant limits their application in the aforementioned fields. In this work, a new promising approach is presented that consists of the formation of a self‐catalytic thermoset/thermoset interpenetrating polymer network. Interpenetrating polymer networks (IPNs) based on modified BMI resin (BMI/DBA) and cyanate ester (b10) were synthesized via prepolymerization followed by thermal curing. The self‐catalytic curing mechanism of BMI/DBA‐CE IPN resin systems was examined by differential scanning calorimetry. The dielectric properties of the cured BMI/DBA‐CE IPN resin systems were evaluated by a dielectric analyzer and shown in dielectric properties‐temperature‐log frequency three‐dimensional plots. The effect of temperature and frequency on the dielectric constant of the cured BMI/DBA‐CE IPN resin systems is discussed. The composition effect on the dielectric constant of the cured IPN resin systems was analyzed on the basis of Maxwell's equation and rule of mixture. The obtained BMI/DBA‐CE IPN resin systems have the combined advantages of low dielectric constant and loss, high‐temperature resistance, and good processability, which have many applications in the microelectronic and aerospace industries. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1123–1134, 2003  相似文献   

12.
Abstract

Flexible polyurethane foams (FPUFs) have been modified to contain layered double hydroxides (LDHs) by dihydrogen phosphate (H2PO4 ?). The thermal stability of the prepared foams has been characterized using thermogravimetric analysis (TGA) at 5, 10, 20, 30, and 40?°C/min heating rates. The experimental data indicate that the temperature range for the two pyrolysis stages of FPUF is about 212–350?°C and 350–565?°C, respectively. Integral programmed decomposition temperature (IPDT) has been calculated according to the measured data, which was found that the IPDT of the modified FPUF was increased to 526?°C. Additionally, the thermal stability of FPUF composite has been also evaluated by the activation energy (E) on the basis of the pyrolysis kinetics of FPUF composites during thermal decomposition using Coats–Redfern integral method. These results manifest that the presence of intercalated LDHs enhances the thermal stability of FPUF.  相似文献   

13.
A stepwise temperature‐ and pressure‐scanning thermal analysis method was developed to measure glass‐transition temperature Tg in the two‐phase polymer–gas systems as a function of gas pressure p, and was used to confirm recent theoretical predictions that certain polymer–gas systems exhibit retrograde vitrification, that is, they undergo rubber‐to‐glass transition on heating. A complete Tgp profile delineating the glass–rubber phase envelope was established for the PMMA‐CO2 system. The retrograde vitrification behavior observed, where at certain gas pressures the polymer exists in the rubbery state at low and high temperatures and in the glassy state at intermediate temperatures, was similar to that reported previously based on the creep‐compliance measurements. The existence of the rubbery state at low temperatures was used to generate foams by saturating the polymer with CO2 at 34 atm and at temperatures in the range −0.2 to 24 °C followed by foaming at temperatures in the range 24 to 90 °C. Foams with very fine cell structure never reported before could be prepared by this technique. For example, PMMA foams with average cell size of 0.35 μm and cell density of 4.4 × 1013 cells/g were prepared by processing the low temperature rubbery phase. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 716–725, 2000  相似文献   

14.
Foamability and foam stability, emulsifying power, surface tension, and interfacial tension were investigated for different ratios of binary surfactant system of Arlacel‐165 (glyceryl stearate (and) PEG‐100 stearate) and Myrj‐59 (polyoxyethylene 100 stearate). Among all the ratios tested for their foaming power and foamabilty, the ratios 8:2, 5:5, 4:6, 2:8, and 1:9 of Arlacel‐165 and Myrj‐59 showed the best results. At these ratios, the foaming power and foamability was found to be 100%. The surfactants having foam stability more than 50% can be considered as metastable and those less than 50% are considered as low‐stability foams. In case of surface tension and interfacial tension property measurements, 8:2 and 9:1 showed the best results. At 8:2 and 9:1 of Arlacel‐165 and Myrj‐59, the surface tension was found to be 37.7 dynes/cm and 1.33 dynes/cm respectively at 30°C ambient temperature. Also, 7:3 of this binary mixture was found to exhibit the best emulsifying power among all the ratios tested. At 30°C, the emulsifying property of the binary mixture was 6 hours.  相似文献   

15.
Four polyimide (PI) foams were prepared from polyamide acid precursors. The effects of monomer structures on the foaming processes and thermal properties of PI foams were investigated. The foaming processes of PI foams were observed by a self‐made visualization device. The thermal properties of four PI foams were studied by the methods of dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and thermogravimetry/differential thermogravimetry (TG/DTG) analysis. The results indicated that the inflation onset temperatures and maximum inflation degrees of four precursors increased from 123 to 171°C and decreased from 28 to 15 times with the increasing rigidity of the precursor molecule, respectively. The glass transition temperatures, the 5% weight loss temperatures, the decomposed activation energies, and pre‐exponential factors of PI foams increased with increase in the rigidity of monomer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
In this work, ethylene–vinyl acetate (EVA) copolymer foams were prepared and crosslinked by using high‐energy electron beam (e‐beam) radiation (10 MeV). The effect of parameters such as irradiation dose, the contents of foaming agent, radiation activator, and radiation sensitizer on improvement of physical and mechanical properties of the EVA foamed samples were investigated. The foams were obtained through a four‐step process of melt mixing, forming, crosslinking, and foaming. During the melt mixing process EVA was compounded with different amounts of azodicarbonamide (ADCA) as a blowing agent, zinc oxide (ZnO) as a radiation activator, and trimethylol propane‐trimethacrylate (TMPTMA) as a radiation sensitizer. The samples were compression molded into flat sheets at low temperature (110°C) and were then radiation‐crosslinked by 20–80 kGy e‐beam. Finally, the crosslinked samples were converted to foams by a high temperature (210°C) compression molding process. The foamed samples were analyzed in terms of gel content, density, compression molding set, tensile properties, and micro‐structural features. It was found that an increase in absorbed radiation dosage increases crosslink density, elasticity, percentage recovery, tensile strength, and compression properties of the EVA foams. Due to the increased recovery the percentage of compression set was reduced. Similarly increasing the TMPTMA content in the formulation increased the crosslink density and the resulting mechanical properties. Contrary to these findings, addition of ADCA led to the formation of extra gases which in turn reduced the crosslink density, and resulted in the deterioration of the mechanical properties and hence an increase in the compression set. However, addition of ZnO and TMPTMA led to the formation of smaller and more uniform cell size with improved mechanical properties. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The foam performances of 3‐dodecoxy‐2‐hydroxypropyl trimethylammonium chloride (C12TAC) have been determined in the existence of different relative amount of polymer. The experimental results show that the foaming ability of the mixture systems of the C12TAC/PEG and C12TAC/PVP is stronger than that of the surfactant solutions in the absence of polymer, and with the increase of relative amount of polymer both foaming efficiency and foam stability of the surfactant solutions are evidently enhanced. For the aqueous solution of the surfactant, effect of temperature on foaming properties has also been examined. The results show that both the foaming ability and stability of the foams of the surfactant solutions are highest (or strongest) at 30°C.  相似文献   

18.
In order to reduce the pollutants of environment and electromagnetic waves, environment friendly polymer foams with outstanding electromagnetic interference shielding are imminently required. In this paper, a kind of electromagnetic shielding, biodegradable nanocomposite foam was fabricated by blending poly (butylene succinate) (PBS) with carbon nanotubes (CNTs) followed by foaming with supercritical CO2. The crystallization temperature and melting temperature of PBS/CNTs nanocomposites with 4 wt % of CNTs increased remarkably by 6 °C and 3.1 °C compared with that of pure PBS and a double crystal melting peak of various PBS samples appeared in DSC curves. Increasing the CNT content from 0 to 4 wt % leads to an increase of approximately 3 orders of magnitude in storage modulus and nearly 9 orders of magnitude in enhancement of electrical properties. Furthermore, CNTs endowed PBS nanocomposite foam with adjustable electromagnetic interference (EMI) shielding property, giving a specific EMI shielding effectiveness of 28.5 dB cm3/g. This study provides a promising methodology for preparing biodegradable, lightweight PBS/CNTs foam with outstanding electromagnetic shielding properties.  相似文献   

19.

New poly(aryl ether ketone)s (PAEKs) with a low melting temperature (relative to PEEK) are of interest in order to simplify the manufacturing of high-performance polymers or composites. In this study, we propose to investigate the physical properties of a new PAEK from Victrex, namely PAEK LM. Combinations of thermal analyses were used as follows: standard and modulated temperature differential scanning calorimetry, dynamic mechanical analysis, dynamic dielectric analysis and guarded hot plate technique. We found that the global mechanical, dielectric and thermal properties are very similar to the PEEK reference. The glass transition temperature was observed in the same range than PEEK (∼ 150 °C) while the melting temperature Tm was measured at 307 °C for PAEK LM which is about 35 °C below the melting temperature of PEEK. The degree of crystallinity of PAEK LM was found to be 27% while for PEEK it is 38%, depending on the processing conditions. This work explored crystalline structure–property relationships to explain the behaviour of PAEK LM.

  相似文献   

20.
We report the synthesis of a new high-temperature liquid-crystalline thermoset based on the phenylethynyl functional group. The monomer was a nematic thermotropic liquid crystal with a melting temperature of 268 °C. The extrapolated onset of the cure exotherm occurred at 313 °C. The cured thermoset retained the nematic liquid-crystalline order of the parent monomer. The monomer and crosslinked resin were characterized by differential scanning calorimetry, optical microscopy, and thermogravimetric analysis. The thermal stability of the crosslinked resin was determined in both air and nitrogen atmospheres at various heating rates. The onset of weight loss in air and nitrogen atmospheres was determined to be 397 and 422 °C, respectively, for a heating rate of 10 °C/min. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4184–4190, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号