首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymer blend membranes have been obtained consisting of a hydrophilic and a hydrophobic polymers distributed in co‐continuous phases. In order to obtain stable membranes in aqueous environments, the hydrophilic phase is formed by a poly(hydrohyethyl acrylate), PHEA, network while the hydrophobic phase is formed by poly(vinylidene fluoride‐co‐trifluoroethylene) P(VDF‐TrFE). To obtain the composites, in a first stage, P(VDF‐TrFE) is blended with poly(ethylene oxyde) (PEO), the latter used as sacrificial porogen. P(VDF‐TrFE)/PEO blend membranes were prepared by solvent casting at 70°C followed by cooling to room temperature. Then PEO is removed from the membrane by immersion in water obtaining a P(VDF‐TrFE) porous membrane. After removing of the PEO polymer, a P(VDF‐TrFE) membrane results in which pores are collapsed. Nevertheless the pores reopen when a mixture of hydroxethyl acrylate (HEA) monomer, ethyleneglycol dimethacrylate (as crosslinker) and ethanol (as diluent) is absorbed in the membrane and subsequent polymerization yields hybrid hydrophilic/hydrophobic membranes with controlled porosity. The membranes are thus suitable for lithium‐ion battery separator membranes and/or biostable supports for cell culture in biomedical applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 672–679  相似文献   

2.
The blend system containing a poly(vinylidene fluoride/trifluoroethylene) [P(VDF/TrFE)] copolymer (68/32 mol %) and poly(vinyl acetate) (PVAc) was miscible from the results of differential scanning calorimetry (DSC) studies that exhibit the presence of a single, composition‐dependent glass transition temperature (Tg) and a strong melting point depression for the semicrystalline P(VDF/TrFE) component. However, differences between the DSC and dielectric measurements, which showed a separate P(VDF/TrFE) Tg peak, suggests that the P(VDF/TrFE)/PVAc blends are actually partially miscible. Because of the lower dielectric constant of PVAc and the reduced sample crystallinity caused by the addition of PVAc, both the dielectric constant and the remanent polarization of the copolymer blends decrease with increasing PVAc content. The presence of a small amount of PVAc stabilized the anomalous ferroelectric behavior of ice–water‐quenched P(VDF/TrFE), and the blend portrayed normal polarization reversal behavior after adding only 1 wt % PVAc. The piezoelectric response suggests small changes with an increasing number of poling cycles. It is believed that PVAc affects the DE hysteresis behavior at the interface between crystalline and amorphous phases, although much work remains to be done to confirm this hypothesis. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 927–935, 2003  相似文献   

3.
The blending between poly(methyl methacrylate) (PMMA) and ferroelectric (vinylidene fluoride‐trifluorethylene) [P(VDF‐TrFE)] copolymer chains has been investigated by Fourier transform infrared (FTIR) spectroscopy over the full range of composition, for the copolymer with 50 mol % of trifluorethylene [TrFE]. The FTIR spectra revealed an absorption band at 1643 cm−1, characteristic of the blend and absent in the individual constituents. We attributed this band to the interaction of the carbonyl group of the PMMA side chains with the disordered helical chains present in the amorphous region of the P(VDF‐TrFE). We investigated the consequences of adding PMMA onto the formation of the all trans conformation of the copolymer chains and we demonstrated that the effects of thermal heating on the spectra are relevant only for the samples where the ferroelectric semicrystalline phase is present. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 34–40, 2000  相似文献   

4.
A nanocomposite with enhanced dielectric response is developed using poly(vinylidene fluoride‐trifluoroethylene) [P(VDF‐TrFE)] as matrix and Chemically modified high dielectric constant organic semiconductor—copper phthalocyanine oligomer (CuPc)—as filler. Transmission electron microscope (TEM)‐observed morphologies reveal that in the nanocomposite the average size of CuPc particles is about 25 nm [1/24 of that of CuPc in physical blend of P(VDF‐TrFE) and CuPc]. The hot‐press nanocomposite film with 15 wt % CuPc can realize a dielectric constant of 540 at 100 Hz. The enhanced dielectric response in the nanocomposite demonstrates the significance of the interface effect in raising the material responses far beyond that expected by simple mixing rules when there is a large dielectric contrast between the polymer matrix and the dielectric filler in the composite. It is also interesting to note that at high frequencies (such as 100 MHz) the nanocomposite has a dielectric constant of ~100 and this value is comparable to those of current materials used in microwave applications. At 105 °C that is near the ferroelectric‐to‐paraelectric phase transition temperature of the P(VDF‐TrFE) ferroelectric, a much higher dielectric constant (about 1200 at 100 Hz) is obtained. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 490–495, 2010  相似文献   

5.
The effects of atomic oxygen (AO) and vacuum UV radiation simulating low Earth orbit conditions on two commercially available piezoelectric polymer films, poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride‐trifluoroethylene) P(VDF‐TrFE), have been studied. Surface erosion and pattern development are significant for both polymers. Erosion yields were determined as 2.8 × 10?24 cm3/atom for PVDF and 2.5 × 10?24 cm3/atom for P(VDF‐TrFE). The piezoelectric properties of the residual material of both polymers were largely unchanged after exposure, although a slight shift in the Curie transition of the P(VDF‐TrFE) was observed. A lightly cross‐linked network was formed in the copolymer presumably because of penetrating vacuum ultraviolet (VUV) radiation, while the homopolymer remained uncross‐linked. These differences were attributed to varying degrees of crystallinity and potentially greater absorption, and hence damage, of VUV radiation in P(VDF‐TrFE) compared with PVDF. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2503–2513, 2005  相似文献   

6.
In this work, we report evidences of cocrystallization in ternary blends made of crystalline ferroelectric poly(vinylidene fluoride‐trifluorethylene) [P(VDF‐TrFE)] copolymers. Complete cocrystallization has been unequivocally demonstrated by the observation of just one Curie and one Melting temperature in their calorimetric thermograms. These temperatures were intermediary among the respective temperatures of the individual constituents, that is, P(VDF‐TrFE)72/28, P(VDF‐TrFE)63/37, and P(VDF‐TrFE)50/50. Dielectric and X ray diffraction data were used to complement the investigation. The binary blends made of 63/37 and 72/28 copolymers were found to be miscible in the entire range of composition, with the behavior of their Curie temperatures being well fitted by an equation very similar to that proposed by Gordon‐Taylor to describe the behavior of the glass transition temperatures in true binary blends. In the ternary crystalline system, we have found evidences that the complete miscibility of the binary blend made of 63/37 and 72/28 copolymers actually drives the P(VDF‐TrFE)50/50 copolymer to accommodate their chains in its binary crystalline structure. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 621–626, 2010  相似文献   

7.
The heterogeneous higher order structure and molecular motion in a single crystalline film of a vinylidene fluoride (VDF) and trifluoroethylene (TrFE) copolymer with 73 mol % VDF was investigated with the 1H–13C cross‐polarization/magic‐angle spinning NMR technique. A transient oscillation was observed in plots of the 13C peak intensity versus the contact time for the CH2, CHF, and CF2 groups. On the basis of the extended cross‐relaxation theory of spin diffusion, we determined that the oscillation behavior was caused by the TrFE‐rich segments in the chain and that the crystal consisted of VDF‐rich and TrFE‐rich domains. The former had TrFE‐rich segments in VDF and TrFE fractions of 0.24 and 0.27, respectively, and the latter had VDF‐rich segments in a VDF fraction of 0.49. The spin–lattice relaxation time T1ρH in the rotating frame for each group was minimal in the three temperature regions of β, αb, and αc (↑) on heating and in the two temperature regions of α1D and αc (↓) on cooling. The αc (↑) and αc (↓) processes depended on the first‐order ferroelectric phase‐transition regions on heating and cooling, respectively. The motional modes for the other processes were confirmed by the T1ρH minimum behavior of the VDF and TrFE groups in the TrFE‐rich domain and the VDF‐rich segments in the VDF‐rich domain. The β and αb processes were attributed to the flip–flop motion of the TrFE‐rich segments and the competitive motion of the TrFE‐ and VDF‐rich segments in the ferroelectric phase, respectively. The α1D process was due to the one‐dimensional diffusion motion of the conformational defects along the chain in the paraelectric phase, accompanied by the trans and gauche transformation of the VDF conformers of ttg+tg? and g+tg?tt. The effect of the competitive motion of the TrFE‐rich segment on the thermal stability of the VDF‐rich segment in the chain near the Curie temperature was examined. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1026–1037, 2002  相似文献   

8.
The effects of electron irradiation on the molecular chemical structure, conformation, mobility, and phase transition of vinylidene fluoride (VDF) and trifluoroethylene (TrFE) copolymer have been investigated with variable‐temperature, solid‐state 19F nuclear magnetic resonance (NMR). It has been found that electron irradiation converts all‐trans conformations of both VDF‐rich and TrFE‐containing segments into dynamically mixed trans–gauche conformations accompanied by a simultaneous ferroelectric‐to‐paraelectric (or amorphous) transition. The variable‐temperature 19F magic‐angle‐spinning spectra results show that the paraelectric phase melts at much lower temperatures in irradiated films than in an unirradiated sample. Moreover, 19F NMR relaxation data (spin–lattice relaxation times in both the laboratory and rotating frames) reveal that electron irradiation enhances the molecular motion in paraelectric regions, whereas the molecular motion in a high‐temperature amorphous melt (>100 °C) is more constrained in irradiated films. Besides these physical changes, electron irradiation also induces the formation of several CF3 groups. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1714–1724, 2006  相似文献   

9.
The relaxor ferroelectric (RFE) behavior in high‐energy electron‐irradiated poly(vinylidene fluoride‐trifluoroethylene) [P(VDF‐TrFE)] 80/20 mol % copolymer system is characterized over a broad frequency and temperature range. The dielectric properties remarkably vary with the irradiated dose in terms of the change from normal ferroelectric (FE) to RFE phase. During the RFE–paraelectric (PE) transition, the dielectric constants, as a function of temperature, can be described by the Vogel–Fulcher (V–F) relation. It has been found that the relationship between the real and imaginary part of dielectric constant in irradiated copolymer can be well fitted with modified Cole–Cole equation and Debye relaxation equation, exhibiting similar features as inorganic RFEs. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2972–2980, 2005  相似文献   

10.
Poly(vinylidene fluoride‐co‐trifluoroethylene‐co‐chlorotrifluoroethylene) (P(VDF‐co‐TrFE‐co‐CTFE)) with internal double bond has been reported with high dielectric constant and energy density at room temperature, which is expected to serve as a promising dielectric film in high pulse discharge capacitors. An environmentally friendly one‐pot route, including the controllable hydrogenation via Cu(0) mediated single electron transfer radical chain transfer reaction (SET‐CTR) and dehydrochlorination catalyzed with N‐containing reagent, is successfully developed to synthesize P(VDF‐co‐TrFE‐co‐CTFE) containing unsaturation. The resultant polymer was carefully characterized with 1H NMR, 19F NMR, and FTIR. The composition of the resultant copolymer is strongly influenced by reaction conditions, including the reaction temperature, catalyst concentration, the types of ligands and solvents. The kinetics data of the chain transfer and elimination reaction demonstrate their well‐controlled feature of the strategy. By shifting the equilibrium between the CTR and elimination reactions dominated by N‐compounds serving as ligands in SET‐CTR and catalyst in the dehydrochlorination of P(VDF‐co‐CTFE), P(VDF‐co‐TrFE‐co‐CTFE) with tunable TrFE and double‐bond content could be synthesized in this one‐pot route. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3429–3440  相似文献   

11.
Thermal processing at various temperatures has been used to fabricate poly(vinylidene fluoride‐co‐trifluoroethylene) [P(VDF‐co‐TrFE)] films with varied crystalline properties in an attempt to improve their piezoelectric properties. Although the dielectric constant of the films annealed at higher temperature is smaller than that of cooled and quenched ones, it has been shown that the annealed films possess larger crystallinity and stacked lamellar crystal grain size. The ferroelectric domains deriving from crystal region in all the samples are effectively improved by hot polarization. As a result, the remnant polarizations (Pr) and coercive electric field (Ec) of the corresponding films are improved at a low frequency due to the response of dipoles in crystal phase, and the largest piezoelectric constant in the longitudinal thickness mode (d33=?25 pC/N) is obtained in an annealed copolymer film. The results illustrate improving the crystal structure of P(VDF‐co‐TrFE) is an effective way to realize high electromechanical properties, which provides broadly applied scenery for this kind of copolymer in piezoelectric components. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

12.
The deformation and fracture behavior under uniaxial tension were characterized for high‐energy irradiated poly(vinylidene fluoride‐trifluorethylene) (P(VDF‐TrFE)) 68/32 mol % copolymer films. The results show that the stress–strain behavior of the irradiated copolymer films exhibits ductile polymeric behavior, with its fracture strain being more than five times of that of the nonirradiated ones but of much lower maximum strength. X‐ray diffraction (XRD) analysis and scanning electron microscope (SEM) observation are carried out to examine the microstructure and morphology changes caused by the uniaxial tension. It is demonstrated that the tensile mechanical field reintroduces the polar β‐phase that was previously lost through irradiation. It is suggested that the conformational change from the nonpolar phase to the polar β‐phase during the uniaxial tension, as well as the low crystallinity and loosely packed molecular chain structure, mainly contribute to the observed stress–strain behavior for the irradiated copolymer films. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2563–2567, 2007  相似文献   

13.
The calorimetric, dielectric, and mechanical responses of highly piezoelectric 70/30 P(VDF‐TrFE) displaying homogenous d33 of ?19 pC N?1 are studied. This work aims at better understanding the influence of poling on the mechanical properties of this copolymer. To explain the one decade mechanical modulus drop observed across the Curie transition, a stiffening process of the amorphous phase due to the local electric fields in the ferroelectric crystals is proposed. In poled P(VDF‐TrFE), these fields are preferentially aligned resulting in a more stable and higher modulus below the Curie transition. This hypothesis accounts for the lower dielectric signals obtained with the poled sample. Through the Curie transition, the vanishing of these local electric fields, stemming from progressive disorientation and conversion of ferroelectric crystals to paraelectric ones, releases the constraints on the amorphous phase, leading to a storage modulus drop typical of a viscoelastic transition. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 1414–1422  相似文献   

14.
In this study, luminescence electrospun (ES) nanofibers based on ternary blends of poly(9,9‐dioctylfluoreny‐2,7‐diyl) (PFO)/poly[2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylenevinylene] (MEH‐PPV)/poly(methyl methacrylate) (PMMA) were prepared from chloroform solutions using a single capillary spinneret. Effects of PFO/MEH‐PPV ratio on the morphology and photophysical properties were studied while the PMMA weight percentage was fixed at 90 wt %. The morphologies of the prepared ES fibers were characterized by FE‐SEM and fluorescence microscopy. The obtained fibers had diameters around a few hundred nm and pore sizes in the range of 30–35 nm. The emission colors of the PFO/MEH‐PPV/PMMA blend ES fibers changed from blue, white, yellowish‐green, greenish‐yellow, orange, to yellow, as the MEH‐PPV composition increased. In contrast, the emission colors of the corresponding spin‐coated films were blue, orange, pink‐red, red, and deep‐red. Based on the values of solubility parameters, the PFO and MEH‐PPV are miscible to each other and trapped in the PMMA matrix. Hence, energy transfer between these two polymers is possible. The smaller aggregated domains in the ES fiber compared to those of spin‐coated films possibly reduce the efficiency of energy transfer, leading to different emission colors. Also, the prepared ES fibers had higher photoluminescence efficiencies than those of the spin‐coated films. Pure white light‐emitting fibers prepared from the PFO/MEH‐PPV/PMMA blend ratio of 9.5/0.5/90 had the Commission Internationale de L'Eclairage (CIE) coordinate of (0.33, 0.31). Our results showed that different color light‐emitting ES fibers were produced through optimizing the composition of semiconducting polymer in the transparent polymer matrix. This type of ES fibers could have potential applications as new light sources or sensory materials for smart textiles. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 463–470, 2009  相似文献   

15.
We present a study of isotropic and uniaxially oriented binary blend films comprising ≤1 wt % of the conjugated polymer poly(9,9‐dioctylfluorene) (PFO) dispersed in both ultra‐high molecular weight (UHMW) and linear‐low‐density (LLD) polyethylene (PE). Polarized absorption, fluorescence and Raman spectroscopy, scanning electron microscopy, and X‐ray diffraction are used to characterize the samples before and after tensile deformation. Results show that blend films can be prepared with PFO chains adopting a combination of several distinct molecular conformations, namely glassy, crystalline, and the so‐called β‐phase, which directly influences the resulting optical properties. Both PFO concentration and drawing temperature strongly affect the alignment of PFO chains during the tensile drawing of the blend films. In both PE hosts, crystallization of PFO takes place during drawing; the resulting ordered chains show optimal optical anisotropy. Our results clarify the PFO microstructure in oriented blends with PE and the processing conditions required for achieving the maximal optical anisotropy. © 2014 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 22–38  相似文献   

16.
We demonstrate that real‐time laser interference microscopy can be used to directly observe the dynamics of film formation and phase separation processes for a bar‐spread polystyrene/poly(methyl methacrylate) blend. The ability to dynamically image laser interference patterns allows compete drying curves and polymer content to be determined throughout the film formation process. The polymer content at which phase separation structure first is observed in the interference micrograph sequence is in good agreement with calculated spinodal curves. Morphology evolution proceeds from phase separation onward via coarsening and coalescence to arrive at the final domain structure. In comparison, spin coating the same polymer blend results in structure evolution being quenched further from equilibrium due to the faster drying rate. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 985–992  相似文献   

17.
The purpose of this work aims at enhancing the electrostrictive strain response and the mechanical energy density under moderate electric field, which is essential for actuator applications. For achieving this, plasticized effects as well as the influence of chlorofluoroethylene and chlorotrifluoroethylene defects on the electromechanical behavior of the copolymer matrix poly(vinylidene fluoride‐trifluoroethylene) (P(VDF‐TrFE)) are investigated. Experimental results showed that the plasticized terpolymer‐based CFE presented better electrical and mechanical performances than the CTFE one. Furthermore, such interesting properties exhibited superior advantages when CFE was combined with (DEHP) plasticizer, resulting in excellent electrostrictive strain response as well as mechanical energy density. Another aspect of this work reports on the influence of the composition, especially the CTFE content, on the electromechanical properties of the neat and plasticized P(VDF‐TrFE‐CTFE). This enables the determination of the desired terpolymer compositions for given applications, which are based on different criteria, such as crystallinity, elastic modulus, dielectric permittivity, and so forth. All the results demonstrated a possibility to realize high performance electroactive polymer actuators while achieving significant improved strain response and energy density under relatively low electric field. Such an investigation allows overcoming the current technological barrier of conventional electroactive polymers that suffer from the high applied electric field usually required to reach sufficient strain. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1368–1379  相似文献   

18.
A series of soluble conjugated copolymers derived from 9,9‐dioctylfluorene (FO) and selenophene (SeH) was synthesized by a palladium‐catalyzed Suzuki coupling reaction with various feed ratios of SeH to FO less than or equal to 50%. The efficient energy transfer from fluorene segments to narrow band‐gap selenophene sites was observed. In comparison with the very well studied copolymer poly(fluorene‐co‐thiophene), poly(9,9‐dioctylfluorene‐co‐selenophene) (PFO‐SeH) shows redshifted photoluminescence (PL) and electroluminescence (EL) emission. PL spectra of the PFO‐SeH copolymers show a significant redshift along with increasing selenophene content in the copolymers and also with increasing polymer concentration in solution. PL quantum efficiency of the selenophene‐containing PFO copolymer is much lower than that of corresponding PFO‐thiophene (Th) copolymers. All these features of PFO‐SeH copolymers can be explained by the difference in aromaticity of selenophene and thiophene heterocycles and the heavy atom effect of Se in comparison with S‐atoms. The device fabricated with PFO‐SeH15 as the emissive layer exhibited high external quantum efficiency (0.51%) at a luminance of 1570 cd/m2. Device performance is limited by electron injection and the strong quenching effect of Se atoms. Devices with PFO‐SeH copolymers blended into PFO homopolymers show significant improvement in device performance. External quantum efficiency as high as 1.7% can be obtained for PFO‐SeH30/PFO blend devices. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 823–836, 2005  相似文献   

19.
This article reports the synthesis and characterization of a novel thermally crosslinkable hole‐transporting poly (fluorene‐co‐triphenylamine) (PFO‐TPA) by Suzuki coupling reaction, followed with its application in the fabrication of multilayer light‐emitting diodes by wet processes. The thermal, photophysical, and electrochemical properties of PFO‐TPA were investigated by differential scanning calorimeter, thermogravimetric analysis, optical spectroscopy, and cyclic voltammetry, respectively. Thermally crosslinked PFO‐TPA, through pendant styryl groups, demonstrates excellent thermal stability (Td > 400 °C, Tg = 152 °C), solvent resistance, and film homogeneity. Its highest occupied molecular orbital level (?5.30 eV) lies between those of PEDOT:PSS (?5.0 ~ ?5.2 eV) and poly(9,9‐dioctylfluorene) (PFO: ?5.70 eV), forming a stepwise energy ladder to facilitate hole injection. Multilayer device with crosslinked PFO‐TPA as hole‐injection layer (HIL) (ITO/PEDOT:PSS/HIL/PFO/LiF/Ca/Al) was readily fabricated by successive spin‐coating processes, its maximum luminance efficiency (3.16 cd/A) were about six times higher than those without PFO‐TPA layer (0.50 cd/A). The result of hole‐only device also confirmed hole‐injection and hole‐transport abilities of crosslinked PFO‐TPA layer. Consequently, the device performance enhancement is attributed to more balanced charges injection in the presence of crosslinked PFO‐TPA layer. The thermally crosslinkable PFO‐TPA is a promising material for the fabrication of efficient multilayer polymer light‐emitting diodes because it is not only a hole‐transporting polymer but also thermally crosslinkable. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
The deformation and fracture behavior under uniaxial tension was characterized for P(VDF‐TrFE) 68/32 mol % copolymer films prepared under two different processing conditions. It was found that the copolymer films prepared by solution casting and then annealing show a typical polymeric brittle fracture feature. For the copolymer films prepared by stretching the solution‐cast films and then annealing process, a typical linearly strengthening stage occurs in the stress–strain curve after yielding, and the polymer film samples fracture at a much larger maximum strain and a higher tensile strength than those prepared by the former process. SEM observation and XRD analysis were carried out to examine the morphology and microstructure change during uniaxial tension. The results show that for the stretched film samples, the polymer chains undergo slipping or further reorientation during uniaxial tension, causing the increase of the peak intensity in the X‐ray diffraction pattern. For the directly annealed ones, no yielding phenomenon is observed and there is no apparent X‐ray diffraction intensity change. It was suggested that the highly‐oriented fibril structure of the stretched film samples contributes to the linearly strengthening stage after yielding in the stress–strain curve. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3255–3260, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号