共查询到20条相似文献,搜索用时 15 毫秒
1.
J. L. Carvalho M. V. Massa K. Dalnoki-Veress 《Journal of polymer science. Part A, Polymer chemistry》2006,44(24):3448-3452
We present results on the use of ellipsometry as a novel probe for the crystallization kinetics in thin films of a diblock copolymer. Ellipsometry makes use of the change in polarization induced upon the reflection of light from a film-covered substrate to enable the calculation of the refractive index and thickness of the film. The information obtained with these measurements can be compared with information from differential scanning calorimetry, with the additional advantages that small sample volumes and slow cooling rates can be employed and that expansion coefficients can be determined. By studying the temperature dependence of these quantities, we are able to measure the crystallization kinetics within very small volumes (∼10−10 L) of a poly(butadiene-b-ethylene oxide) diblock copolymer. Through a comparison of two different poly (ethylene oxide) block lengths, we demonstrate a reduction in both the crystallization and melting temperatures as the domain volume is reduced. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3448–3452, 2006 相似文献
2.
Wenchuan Lee Hsin‐Lung Chen Tsang‐Lang Lin 《Journal of Polymer Science.Polymer Physics》2002,40(6):519-529
The crystallization kinetics of poly(ethylene oxide) (PEO) blocks in poly(ethylene oxide)‐block‐poly(1,4‐butadiene) (PEO‐b‐PB)/poly(1,4‐butadiene) (PB) blends were previously found to display a one‐to‐one correlation with the microdomain morphology. The distinct correlation was postulated to stem from the homogeneous nucleation‐controlled crystallization in the cylindrical and spherical PEO microdomains, where there existed a direct proportionality between the nucleation rate and the individual domain volume. This criterion was valid for confined crystallization in which the crystallization was spatially restricted within the individual domains. However, it was possibly not applicable to PEO‐b‐PB/PB, in that the melt mesophase was strongly perturbed upon crystallization. Therefore, it may be speculated that the crystal growth front developed in a given microdomain could intrude into the nearby noncrystalline domains, yielding the condition of cooperative crystallization. To establish an unambiguous model system for verifying the existence of microdomain‐tailored kinetics in confined crystallization, we crosslinked amorphous PB blocks in PEO‐b‐PB/PB with a photoinitiated crosslinking reaction to effectively suppress the cooperative crystallization. Small‐angle X‐ray scattering revealed that, in contrast to the noncrosslinked systems, the pre‐existing domain morphology in the melt was retained upon crystallization. The crystallization kinetics in the crosslinked system also exhibited a parallel transition with the morphological transformation, thereby verifying the existence of microdomain‐tailored kinetics in the confined crystallization of block copolymers. Homogeneous nucleation‐controlled crystallizations in cylindrical and spherical morphologies were demonstrated in an isothermal crystallization study in which the corresponding crystallinity developments followed a simple exponential rule not prescribed by conventional spherulitic crystallization. Despite the effective confinement imposed by the crosslinked PB phase, crystallization in the lamellar phase still proceeded through a mechanism analogous to the spherulitic crystallization of homopolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 519–529, 2002; DOI 10.1002/polb.10121 相似文献
3.
The kinetics of domain size equilibration were studied for asymmetric poly(ethylene‐alt‐propylene)‐b‐poly(dimethyl siloxane) (EPDMS) and polyisoprene‐b‐poly(dimethyl siloxane) (IDMS) block copolymers in the body‐centered cubic ordered phase. Small‐angle X‐ray scattering measurements of the principal peak position (q*) were made as a function of time after temperature jumps within the ordered state. The equilibration times were remarkably long, especially on cooling and for temperatures below 100 °C. For example, after a quench to 40 °C, q* for EPDMS had not fully equilibrated even after several weeks of annealing; IDMS required several days to equilibrate at the same temperature. In contrast, a lamella‐forming EPDMS sample was able to adjust q* within the timescale of the measurements (i.e., minutes) with both heating and cooling over the same temperature range. Measurements of tracer diffusion indicated that chain mobility was not the rate‐limiting step, although differences in mobility did account for the differences between EPDMS and IDMS. Rather, the limiting step was the required reduction in the number density of spheres on cooling; the disappearance of spheres, either by evaporation or by fusion, provided a large kinetic barrier. Lamellae, however, could adjust domain dimensions simply by local displacements of individual chains. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 715–724, 2003 相似文献
4.
We report the self‐consistent field theory (SCFT) of the morphology of lamella‐forming diblock copolymer thin films confined in two horizontal symmetrical/asymmetrical surfaces. The morphological dependences of thin films on the polymer‐surface interactions and confinement, such as film thickness and confinement spatial structure, have been systematically investigated. Mechanisms of the morphological transitions can be understood mainly through the polymer‐surface interactions and confinement entropy, in which the plat confinement surface provides a surface‐induced effect. The confinement is expressed in the form of the ratio D/L0, here D is film thickness, and L0 is the period of bulk lamellar‐structure. Much richer morphologies and multiple surface‐induced morphological transitions for the lamella‐forming diblock copolymer thin films are observed, which have not been reported before. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1–10, 2009 相似文献
5.
Cynthia A. Mitchell Ramanan Krishnamoorti 《Journal of Polymer Science.Polymer Physics》2002,40(14):1434-1443
The melt‐state viscoelastic properties of nanocomposites prepared with a symmetrical polystyrene–polyisoprene block copolymer and organically modified layered silicates are examined. Nanocomposites based on three thermodynamically equivalent organically modified layered silicates, primarily differing in lateral disk diameter (d), are studied with small‐amplitude oscillatory shear. The effects of the domain structure of the ordered block copolymer and the mesoscale dispersion of the layered silicates on the rheological properties are examined via a comparison of data for the nanocomposites in the ordered and disordered states of the block copolymer. Hybrids prepared with 5 wt % organically modified fluorohectorite (d ~ 10 μm) and montmorillonite (d ~ 1 μm) demonstrate a notable decrease in the frequency dependence of the moduli at low frequencies and a significant enhancement in the complex viscosity at low frequencies in the disordered state. This behavior is understood in terms of the development of a percolated layered‐silicate network structure. However, the viscoelastic properties in the disordered state with 5 wt % organically modified laponite (d ~ 30 nm) and in the ordered state of the block copolymer for all layered silicates demonstrate only minor changes from those observed for the unfilled polymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1434–1443, 2002 相似文献
6.
Demixing during film casting of blends of polystyrene, polymethylmethacrylate, and a symmetric diblock copolymer of styrene and methylmethacrylate is discussed. The concentration fluctuations in the homogeneous solutions were calculated in mean field approximation. The structures in the homogeneous and demixed solutions and in the dry films were measured by small-angle x-ray scattering, and the morphologies of the dry films were characterized by transmission electron microscopy. The structure of the dry blends is evidently already pre-formed in solution. 相似文献
7.
Ching‐I Huang Shang‐Hsiu Tsai Chih‐Ming Chen 《Journal of Polymer Science.Polymer Physics》2006,44(17):2438-2448
The crystal unit‐cell structures and the isothermal crystallization kinetics of poly(L ‐lactide) in biodegradable poly(L ‐lactide)‐block‐methoxy poly(ethylene glycol) (PLLA‐b‐MePEG) diblock copolymers have been analyzed by wide‐angle X‐ray diffraction and differential scanning calorimetry. In particular, the effects due to the presence of MePEG that is chemically connected to PLLA as well as the PLLA crystallization temperature TC are examined. Though we observe no variation of both the PLLA and MePEG crystal unit‐cell structures with the block ratio between PLLA and MePEG and TC, the isothermal crystallization kinetics of PLLA is greatly influenced by the presence of MePEG that is connected to it. In particular, the equilibrium melting temperature of PLLA, T, significantly decreases in the diblock copolymers. When the TC is high so that the crystallization is controlled by nucleation, because of the decreasing T and thereafter the nucleation density with decreasing PLLA molecular weight, the crystallinity of PLLA also decreases with a decrease in the PLLA molecular weight. While, for the lower crystallization temperature regime controlled by the growth mechanism, the crystallizability of PLLA in copolymers is greater than that of pure PLLA. This suggests that the activation energy for the PLLA segment diffusing to the crystallization site decreases in the diblocks. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2438–2448, 2006 相似文献
8.
Xinyu Wei Weiyin Gu Le Li Xiaobo Shen Jung‐Keun Kim Thomas P. Russell 《Journal of Polymer Science.Polymer Physics》2013,51(1):78-85
We reported the synthesis and morphology of a novel alkyne‐functionalized diblock copolymer (di‐BCP) poly(methyl methacrylate‐random‐propargyl methacrylate)‐block‐poly(4‐bromostyrene). The di‐BCPs were synthesized by atom transfer radical polymerization and postpolymerization deprotection, with good control over molecular weight and polydispersity index. Microphase separation in bulk di‐BCPs was confirmed by thermal analysis, small‐angle X‐ray scattering, and transmission electron microscopy. Microphase‐separated morphologies were also observed in thin films, and the orientation of the microdomains can be conveniently controlled by annealing under different solvents. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012 相似文献
9.
Qipeng Guo Fei Chen Ke Wang Ling Chen 《Journal of Polymer Science.Polymer Physics》2006,44(21):3042-3052
An amphiphilic poly(ethylene oxide)‐block‐poly(dimethylsiloxane) (PEO–PDMS) diblock copolymer was used to template a bisphenol A type epoxy resin (ER); nanostructured thermoset blends of ER and PEO–PDMS were prepared with 4,4′‐methylenedianiline (MDA) as the curing agent. The phase behavior, crystallization, hydrogen‐bonding interactions, and nanoscale structures were investigated with differential scanning calorimetry, Fourier transform infrared spectroscopy, transmission electron microscopy, and small‐angle X‐ray scattering. The uncured ER was miscible with the poly(ethylene oxide) block of PEO–PDMS, and the uncured blends were not macroscopically phase‐separated. Macroscopic phase separation took place in the MDA‐cured ER/PEO–PDMS blends containing 60–80 wt % PEO–PDMS diblock copolymer. However, the composition‐dependent nanostructures were formed in the cured blends with 10–50 wt % PEO–PDMS, which did not show macroscopic phase separation. The poly(dimethylsiloxane) microdomains with sizes of 10–20 nm were dispersed in a continuous ER‐rich phase; the average distance between the neighboring microdomains was in the range of 20–50 nm. The miscibility between the cured ER and the poly(ethylene oxide) block of PEO–PDMS was ascribed to the favorable hydrogen‐bonding interaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3042–3052, 2006 相似文献
10.
Lisaleigh Kane Michael M. Satkowski Steven D. Smith Richard J. Spontak 《Journal of Polymer Science.Polymer Physics》1997,35(16):2653-2658
Recent experimental evidence and theoretical predictions indicate that binary blends of relatively monodisperse diblock copolymers remain miscible if the molecular weight disparity of the constituent copolymers is not too great. In this work, we examine the effect of moderate copolymer polydispersity on both the microstructural characteristics and phase behavior of blends prepared from four compositionally symmetric poly(styrene-b-isoprene) (SI) diblock copolymers ranging in polydispersity (M̄w/M̄n) from 1.02 to 1.30. Blend periodicities, measured by small-angle X-ray scattering, compare favorably with predictions from a strong segregation theory proposed for lamellar diblock copolymer blends composed of monomolecular copolymers. Transmission electron microscopy, employed to ascertain the real-space morphological characteristics of these blends, reveals that a lamellar → cylindrical transition occurs in macrophase-separated blends. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2653–2658, 1997 相似文献
11.
Katsuhiro Inomata Yoichi Sasaki Takuhei Nose 《Journal of Polymer Science.Polymer Physics》2002,40(17):1904-1912
We have investigated the morphology and packing manner of graft copolymers consisting of rigid‐rod‐like poly(γ‐benzyl L ‐glutamate) (PBLG) main chains and grafted diblock copolymers of amorphous poly(propylene glycol) (PPG) and crystalline poly(ethylene glycol) (PEG). The results of differential scanning calorimetry and wide‐angle X‐ray scattering measurements for graft copolymers with higher side‐chain volume fractions suggest that the rodlike main chains and crystallized PEG chains exist in segregated domains. Small‐angle X‐ray scattering profiles for these samples show diffraction intensity maxima accompanied by higher order peaks, the positions of which suggest the formation of an ordered layered structure. From these observations, the graft copolymers are estimated to form repeated layered structure consisting of segregated PBLG, PPG, and PEG layers. A proposed model for molecular packing of the graft copolymers is consistent with the experimental observation that the repeating distance for the layered structure decreases with an increase in the volume fraction of side chains. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1904–1912, 2002 相似文献
12.
Sang‐Byung Park Jung‐guk Ha Sei Kwang Hahn Wang‐Cheol Zin 《Journal of Polymer Science.Polymer Physics》2014,52(6):470-476
The phase behaviors of binary blends of poly(styrene‐b‐butadiene) block copolymers were investigated by a small‐angle X‐ray scattering technique. The blends were composed of weakly segregated one in a random micellar phase and the other in a cylindrical phase with similar molecular weights and complementary volume fractions. Morphologies, domain spacings, and order–disorder transition temperatures of the blends indicated that the junctions of the constituent block copolymers share the interface at low temperatures. The domain spacing decreased as temperature increased in a blend with a small amount of the weakly segregated block copolymer. In the cases of the blends with a large amount of the weakly segregated constituent, domain spacing increased with increasing temperature. These results implied that some of the weakly segregated block copolymer moved from the interface to one microdomain at higher temperatures. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 470–476 相似文献
13.
14.
Ralf Lach Roland Weidisch Konrad Knoll 《Journal of Polymer Science.Polymer Physics》2005,43(4):429-438
The influence of the morphology on the mechanical properties of binary styrene–butadiene (SB) triblock copolymer blends of a thermoplastic block copolymer and a thermoplastic elastomer (TPE) with different molecular architectures was studied with bulk samples prepared from toluene. Both block copolymers contained SB random copolymer middle blocks, that is, the block sequence S–SB–S. The two miscible triblock copolymers were combined to create a TPE with increased tensile strength without a change in their elasticity. The changes in the equilibrium morphology of the miscible triblock copolymer blends as a function of the TPE content (lamellae, bicontinuous morphology, hexagonal cylinders, and worms) resulted in a novel morphology–property correlation: (1) the strain at break and Young's modulus of blends with about 20 wt % TPE were larger than those of the pure thermoplastic triblock copolymer; (2) at the transition from bicontinuous structures to hexagonal structures (~35 wt % TPE), a change in the mechanical properties from thermoplastic to elastomeric was observed; and (3) in the full range of wormlike and hexagonal morphology (60–100 wt % TPE), elastomeric properties were observed, the strength greatly increasing and high‐strength elastomers resulting. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 429–438, 2005 相似文献
15.
Shuaigang Xiao XiaoMin Yang Justin J. Hwu Kim Y. Lee David Kuo 《Journal of Polymer Science.Polymer Physics》2014,52(5):361-367
Nanoimprint lithography is used to create large‐area two‐dimensional prepatterns with tunable topographic heights in a resist layer. The resist prepatterns are applied to direct the self‐assembly of sphere‐forming polystyrene‐block‐polydimethylsiloxane block copolymers so as to form sparse nonregular nanodot arrays with flexible pattern layouts from high‐topography prepattern or dense regular nanodot arrays with a multiplicative pattern density from low‐topography prepattern. By precisely controlling the topographic height in substrate prepatterns, the origin of directed self‐assembly of block copolymer spheres using low‐topography prepattern is found to be topographic contrast. High‐fidelity pattern transfer from spherical block copolymer nanotemplates to functional materials indicates a promising route to ultrahigh density nanodevices. Bit‐patterned media over 1 teradot/in on a 2.5‐inch disk are fabricated, thus presenting future magnetic data storage media with great areal density growth potential. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 361–367 相似文献
16.
Fabao Zhao Jianping Sun Zhilei Liu Liang Feng Jiwen Hu 《Journal of Polymer Science.Polymer Physics》2010,48(3):364-371
Reported here is self‐assembly behavior in selective solvent of diblock copolymers with relatively long corona‐forming block compared to core‐forming block. Three diblock copolymers, poly(ethylene glycol) monomethyl ether‐b‐poly(methacryloyl‐L ‐leucine methyl ester), also denoted as MPEG‐b‐PMALM copolymer, were prepared by fixing MPEG block with an average number of repeating units of 115, whereas varying PMALM block with an average number of repeating unit of 44, 23, 9, respectively. Multiple morphologies, such as sphere, cylinder, vesicle, and their coexisted structures from self‐assembly of these diblock copolymers in aqueous media by changing block nonselective solvent and initial polymer concentration used in preparation, were demonstrated directly via TEM observation. These results herein might, therefore, demonstrate as an example that a wide range of morphologies can be accessed not only from “crew‐cut micelles” but also from “star‐micelles” by controlling over preparation strategies. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 364–371, 2010 相似文献
17.
Fengjun Hua Eli Ruckenstein 《Journal of polymer science. Part A, Polymer chemistry》2004,42(9):2179-2191
We report the synthesis of a water‐soluble diblock copolymer composed of polysulfonic diphenyl aniline (PSDA) and poly(ethylene oxide) (PEO), which was prepared by reacting an amine‐terminated PSDA and tosylate PEO (PEO‐Tos). First, a HCl‐mediated polymerization of sulfonic diphenyl aniline monomer with the formation of HCl‐doped PSDA was carried out. After its neutralization and reduction, a secondary amine‐functionalized PSDA was obtained. Second, PEO‐Tos was synthesized via the tosylation of the monohydroxyl PEO methyl ether with tosylol chloride. Diblock copolymers with various PEO segment lengths (PSDA‐b‐PEO‐350 and PSDA‐b‐PEO‐2000) were obtained with PEO‐350 [number‐average molecular weight (Mn) = 350] and PEO‐2000 (Mn = 2000). The prepolymers and diblock copolymers were characterized by Fourier transform infrared spectroscopy, NMR, mass spectrometry, and ultraviolet–visible light. They had relatively low conductivities, ranging from 10?6 to 10?3 S/cm, because of the withdrawing effect of the sulfonic group as well as the steric effects of the bulky aromatic substitutuents at the N sites of the polyaniline backbone and of the PEO block. These polymers were self‐doped, and an intermolecular self‐doping was suggested. The external doping was, however, more effective. The self‐doping induced aggregation in water among the PSDA backbones, which was also stimulated by the presence of hydrophilic PEO blocks. Furthermore, the electrical conductivities of the diblock copolymers were strongly temperature‐dependent. PSDA‐b‐PEO‐2000 exhibited about one order of magnitude increase in conductivity upon heating from 32 to 57 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2179–2191, 2004 相似文献
18.
A. R. Kamdar H. P. Wang D. U. Khariwala A. Taha A. Hiltner E. Baer 《Journal of Polymer Science.Polymer Physics》2009,47(16):1554-1572
New challenges and opportunities for polyolefin blends arise from the recent introduction of olefin block copolymers (OBCs). In this study, the effect of chain blockiness on the miscibility and phase behavior of ethylene‐octene (EO) copolymer blends was studied. Binary blends of two statistical copolymers (EO/EO blends) that differed in comonomer content were compared with blends of an EO with a blocky EO copolymer (EO/OBC blends). The blends were rapidly quenched to retain the phase morphology in the melt and the phase volumes were obtained by atomic force microscopy (AFM). Two EOs of molecular weight about 100 kg/mol were miscible if the difference in octene content was less than about 10 mol % and immiscible if the octene content difference was greater than about 13 mol %. The blocky nature of the OBCs reduced the miscibility and broadened the partial miscibility window of the EO/OBC blends compared with the EO/EO blends. The EO/OBC blends were miscible if the octene content difference was less than 7 mol % and immiscible above 13 mol % octene content difference. It was also found that the phase behavior of EO/OBC blends strongly depended on blend composition even for constituent polymers of about the same molecular weight. Significantly more demixing was observed in an OBC‐rich blend (EO/OBC 30/70 v/v) than in an OBC‐poor blend (EO/OBC 70/30 v/v). An interpretation based on extractable fractions of the OBC described the major features of the EO/OBC (30/70 v/v) blends. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1554–1572, 2009 相似文献
19.
Xiaoping Guo 《Journal of Polymer Science.Polymer Physics》2008,46(19):2035-2046
Segmented poly(ether‐block‐amide) copolymers are typically known as polyamide‐based thermoplastic elastomers consisting of hard, crystallizable polyamide block and flexible, amorphous polyether block. The melting characteristics of a poly(ether‐block‐amide) copolymer melt‐crystallized under various quiescent, isothermal conditions were calorimetrically investigated using differential scanning calorimetry (DSC). For such crystallized copolymer samples, their crystalline structures under ambient condition and the structural evolutions upon heating from ambient to complete melting were characterized using ambient and variable‐temperature wide‐angle X‐ray diffractometry (WAXD), respectively. It was observed that dependent of specific crystallization conditions, the copolymer samples exhibited one, two, or three melting endotherms. The ambient WAXD results indicated that all melt‐crystallized copolymer samples only exhibited γ‐form crystals associated with the hexagonal habits of the polyamide homopolymer, whereas variable‐temperature WAXD data suggested that upon heating from ambient, a melt‐crystallized copolymer might exhibit so‐called Brill transition before complete melting. Based on various DSC and variable‐temperature WAXD experimental results obtained in this study, the applicability of different melting mechanisms that might be responsible for multiple melting characteristics of various crystallized PEBA copolymer samples were discussed. It was postulated that the low (T m1) endotherm was primarily because of the disruption of less thermally stable, short‐range ordered structure of amorphous polyamide segments of the copolymer, which was only formed after the completion of primary crystallization via so‐called annealing effects. The intermediate (Tm2) and high (Tm3) endotherms were attributed to the melting of primary crystals within polyamide crystalline microdomains of the copolymer. The appearance of these two melting endotherms might be somehow complicated by thermally induced Brill transition. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2035–2046, 2008 相似文献
20.
Jing Ji Lifeng Yan Dinghai Xie 《Journal of polymer science. Part A, Polymer chemistry》2008,46(9):3098-3107
Amphiphilic polymeric particles with hydrophobic cores and hydrophilic shells were prepared via living radical emulsion polymerization of styrene using a water‐soluble poly(acrylamide)‐based macro‐RAFT agent in aqueous solution in the absence of any surfactants. Firstly, the homopolymerization of acrylamide (AM) was carried out in aqueous phase by reversible addition‐fragmentation chain transfer radical polymerization (RAFT) using a trithiocarbonate as a chain transfer agent. Then the PAM‐based macro‐RAFT agent has been used as a water‐soluble macromolecular chain transfer agent in the batch emulsion polymerization of Styrene (St) free of surfactants. The RAFT controlled growth of hydrophobic block led to the formation of well‐defined poly(acrylamide)‐copolystyrene amphiphilic copolymer, which was able to work as a polymeric stabilizer (self‐stability). Finally, very stable latex was prepared, having no visible phase separation for several months. FTIR and 1H‐NMR measurements showed that the product was the block copolymer PAM‐co‐PS in the form of stable latex. Atomic force microscope (AFM), transmission electron microscope (TEM), and dynamic light scattering (DLS) studies indicated that the nanoparticles have a narrow particle size distribution and the average particle hydrodynamic radius was kept in the diameter of 58 nm. Core‐shell structure of the copolymer was also recorded by TEM. The mechanism of the self‐stability of polymer particles during the polymerization in the absence of surfactants was studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3098–3107, 2008 相似文献