首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alkoxysubstituted benzo[c][1,2,5]thiadiazole electron accepting units were prepared and copolymerized with various thiophene‐based electron donating monomers to produce new low bandgap polymers P1–4 . The materials showed broad absorption in the range from 300 to 700 nm with bandgaps below 2 eV in solution. Efficiencies of over 1% were obtained from photovoltaic cells using P4 with PCBM as acceptor. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
A series of soluble donor‐acceptor conjugated polymers comprising of phenothiazine donor and various benzodiazole acceptors (i.e., benzothiadiazole, benzoselenodiazole, and benzoxadiazole) sandwiched between hexyl‐thiophene linkers were designed, synthesized, and used for the fabrication of polymer solar cells (PSC). The effects of the benzodiazole acceptors on the thermal, optical, electrochemical, and photovoltaic properties of these low‐bandgap (LBG) polymers were investigated. These LBG polymers possessed large molecular weight (Mn) in the range of 3.85?5.13 × 104 with high thermal decomposition temperatures, which demonstrated broad absorption in the region of 300?750 nm with optical bandgaps of 1.80?1.93 eV. Both the HOMO energy level (?5.38 to ?5.47 eV) and LUMO energy level (?3.47 to ?3.60 eV) of the LBG polymers were within the desirable range of ideal energy level. Under 100 mW/cm2 of AM 1.5 white‐light illumination, bulk heterojunction PSC devices containing an active layer of electron donor polymers mixed with electron acceptor [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) or [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) in different weight ratios were investigated. The best performance of the PSC device was obtained by using polymer PP6DHTBT as an electron donor and PC71BM as an acceptor in the weight ratio of 1:4, and a power conversion efficiency value of 1.20%, an open‐circuit voltage (Voc) value of 0.75 V, a short‐circuit current (Jsc) value of 4.60 mA/cm2, and a fill factor (FF) value of 35.0% were achieved. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
We have synthesized six p‐type copolymers, CPDT ‐ co ‐ TPADCN , CPDT ‐ co ‐ TPADTA , CPDT ‐ co ‐ TPATCN , CPDT ‐ co ‐ DFADCN , CPDT ‐ co ‐ DFADTA , and CPDT ‐ co ‐ DFATCN , consisting of a cyclopenta[2,1‐b:3,4‐b′]dithiophene (CPDT) unit and an organic dye in an alternating arrangement. Triphenylamine (TPA) or difluorenylphenyl amine (DFA) units serve as the electron donors, whereas dicyanovinyl (DCN), 1,3‐diethyl‐2‐thiobarbituric acid, or tricyanovinyl (TCN) units act as the electron acceptors in the dyes. The target polymers were prepared via Stille coupling, followed by postfunctionalization to introduce the electron acceptors to the side chains. Because of the strongest withdrawing ability of TCN acceptor to induce efficient intramolecular charge transfer, CPDT ‐ co ‐ TPATCN and CPDT ‐ co ‐ DFATCN exhibit the broader absorption spectra covering from 400 to 900 nm and the narrower optical band gaps of 1.34 eV. However, the CPDT ‐ co ‐ TPATCN :PC71BM and CPDT ‐ co ‐ DFATCN :PC71BM based solar cells showed the power conversion efficiencies (PCEs) of 0.22 and 0.31%, respectively, due to the inefficient exciton dissociation. The DFA‐based polymers possess deeper‐lying HOMO energy levels than the TPA‐based polymer analogues, leading to the higher Voc values and better efficiencies. The device based on CPDT ‐ co ‐ DFADTA :PC71BM blend achieved the best PCE of 1.38% with a Voc of 0.7 V, a Jsc of 4.57 mA/cm2, and a fill factor of 0.43. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
Two β‐cyano‐thiophenevinylene‐based polymers containing cyclopentadithiophene ( CPDT‐CN ) and dithienosilole ( DTS‐CN ) units were synthesized via Stille coupling reaction with Pd(PPh3)4 as a catalyst. The effects of the bridged atoms (C and Si) and cyano‐vinylene groups on their thermal, optical, electrochemical, charge transporting, and photovoltaic properties were investigated. Both polymers possessed the highest occupied molecular orbital (HOMO) levels of about ?5.30 eV and the lowest unoccupied molecular orbital (LUMO) levels of about ?3.60 eV, and covered broad absorption ranges with narrow optical band gaps (ca. 1.6 eV). The bulk heterojunction polymer solar cell (PSC) devices containing an active layer of electron‐donor polymers ( CPDT‐CN and DTS‐CN ) blended with an electron‐acceptor, that is, [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) or [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM), in different weight ratios were explored under 100 mW/cm2 of AM 1.5 white‐light illumination. The PSC device based on DTS‐CN: PC71BM (1:2 w/w) exhibited a best power conversion efficiency (PCE) value of 2.25% with Voc = 0.74 V, Jsc = 8.39 mA/cm2, and FF = 0.36. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

5.
Five novel conjugated copolymers ( P1 – P5 ) containing coplanar cyclopentadithiophene (CPDT) units (incorporated with arylcyanovinyl and keto groups in different molar ratios) were synthesized and developed for the applications of polymer solar cells (PSCs). Polymers P1 – P5 covered broad absorption ranges from UV to near infrared (400–900 nm) with narrow optical band gaps of 1.38–1.70 eV, which are compatible with the maximum solar photon reflux. Partially reversible p‐ and n‐doping processes of P1 – P5 in electrochemical experiments were observed, and the proper molecular design for highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) levels of P1 – P5 induced the highest photovoltaic open‐circuit voltage in the PSC devices, compared with those previously reported CPDT‐based narrow‐band‐gap polymers. Powder X‐ray diffraction (XRD) analyses suggested that these copolymers formed self‐assembled π‐π stacking and pseudobilayered structures. Under 100 mW/cm2 of AM 1.5 white‐light illumination, bulk heterojunction PSC devices containing an active layer of electron donor polymers P1 – P5 mixed with electron acceptor [6,6]‐phenyl C61 butyric acid methyl ester (PCBM) in the weight ratio of 1:4 were investigated. The PSC device containing P1 gave the best preliminary result with an open‐circuit voltage of 0.84 V, a short‐circuit current of 2.36 mA/cm2, and a fill factor of 0.38, offering an overall power conversion efficiency (PCE) of 0.77% as well as a maximal quantum efficiency of 23% from the external quantum efficiency (EQE) measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2073–2092, 2009  相似文献   

6.
New diketopyrrolopyrrole (DPP)‐containing amorphous conjugated polymers, such as poly(3‐(5‐((9,10‐bis((4‐hexylphenyl)ethynyl)‐6‐(prop‐1‐ynyl)anthracen‐2‐yl)ethynyl) thiophen‐2‐yl)‐5‐(2‐hexyldecyl)‐2‐(2‐octyldodecyl)‐6‐(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) ( 4 ), and poly(3‐(5‐((2,6‐bis((4‐hexylphenyl)ethynyl)‐10‐(prop‐1‐ynyl)anthracen‐9‐yl)ethynyl)thiophen‐2‐yl)‐2,5‐bis(2‐octyldodecyl)‐6‐(thio phen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) ( 7 ), were successfully synthesized via Sonogashira coupling reactions under microwave conditions. Copolymer 7 , incorporating a DPP moiety at the 9,10‐position of the anthracene ring through a triple bond, showed a much lower bandgap energy (Eg = 1.81 eV) than copolymer 4 (Eg = 2.13 eV). Tuning of the molecular frontier orbital energies was achieved by only changing the anchoring position of dithiophenyl‐DPP from the 2,6‐ to the 9,10‐position in the anthracene ring. Because of the donor–acceptor (D–A) interaction and the two‐dimensional planar structure of the X‐shaped donor monomer, the resulting polymers showed good interchain π?π stacking in the thin‐film state, despite being amorphous polymers. When the newly synthesized polymer 7 was used as a semiconductor material in an organic thin‐film transistor, the best mobility of up to 0.12 cm2 V?1 s?1 (Ion/off = ~ 4.4 × 106) was observed, which is one of the highest values recorded for amorphous polymer films reported to date. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
In an effort to design efficient low‐cost polymers for use in organic photovoltaic cells the easily prepared donor–acceptor–donor triad of a either cis‐benzobisoxazole, trans‐benzobisoxazole or trans‐benzobisthiazole flanked by two thiophene rings was combined with the electron‐rich 4,8‐bis(5‐(2‐ethylhexyl)‐thien‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene. The electrochemical, optical, morphological, charge transport, and photovoltaic properties of the resulting terpolymers were investigated. Although the polymers differed in the arrangement and/or nature of the chalcogens, they all had similar highest occupied molecular orbital energy levels (?5.2 to ?5.3 eV) and optical band gaps (2.1–2.2 eV). However, the lowest unoccupied molecular orbital energy levels ranged from ?3.1 to ?3.5 eV. When the polymers were used as electron donors in bulk heterojunction photovoltaic devices with PC71BM ([6,6]‐phenyl C71‐butyric acid methyl ester) as the acceptor, the trans‐benzobisoxazole polymer had the best performance with a power conversion efficiency of 2.8%. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 316–324  相似文献   

8.
A new donor–acceptor (D–A) conjugated copolymer based on benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and thieno[3,4‐c]pyrrole‐4,6‐dione (TPD) was synthesized via a Stille cross‐coupling reaction. A highly conjugated thiophene‐based side group, tris(thienylenevinylene) (TTV), was incorporated into each BDT unit to generate the two‐dimensional D–A copolymer (PBDT‐TTV). An alkoxy‐substituted BDT‐based TPD copolymer (PBDT‐OR) was synthesized using the same polymerization method for comparison. PBDT‐TTV thin films produced two distinct absorption peaks. The shorter wavelength absorption (458 nm) was attributed to the BDT units containing the TTV group, and the longer wavelength band (567–616 nm) was attributed to intramolecular charge transfer between the BDT donor and the TPD acceptor. The highest occupied molecular orbital energy levels of PBDT‐OR and PBDT‐TTV were calculated to be −5.53 and −5.61 eV, respectively. PBDT‐TTV thin films harvested a broad solar spectrum covering the range 300–700 nm. A comparison with the PBDT‐OR films revealed stronger interchain π–π interactions in the PBDT‐TTV films and, thus, a higher hole mobility. A polymer solar cell device prepared using PBDT‐TTV as the active layer was found to exhibit a higher power conversion efficiency than a device prepared using PBDT‐OR under AM 1.5 G (100 mW/cm2) conditions. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 653–660  相似文献   

9.
π‐Conjugated polymers, PBDT‐CNETT and PBDT‐CNECPDT , were prepared by the Stille cross‐coupling polymerization. Optical and thermal properties of the obtained polymers were investigated by UV–vis spectroscopy and thermogravimetric analysis. PBDT‐CNETT and PBDT‐CNECPDT exhibited very narrow band gaps of 1.39 and 1.13 eV, respectively. Highest occupied molecular orbital energy levels estimated by surface analyzer were ?5.17 and ?5.11 eV for PBDT‐CNETT and PBDT‐CNECPDT , respectively. The solar cells based on these polymers were evaluated with the cell configuration of ITO/PEDOT‐PSS/polymer:PC61BH/LiF/Al. The power conversion efficiencies of the solar cells were estimated to be 1.57 and 0.16% for PBDT‐CNETT and PBDT‐CNECPDT , respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
A series of novel narrow‐band‐gap copolymers ( P1 ‐ P12 ) composed of alkyl‐substituted fluorene (FO) units and six analogous mono‐ and bis(2‐aryl‐2‐cyanovinyl)‐10‐hexylphenothiazine monomers ( M1 ‐ M6 ) were synthesized by a palladium‐catalyzed Suzuki coupling reaction with two different feed in ratios of FO to M1 ‐ M6 (molar ratio = 3:1 and 1:1). The absorption spectra of polymers P1 ‐ P12 exhibited broad peaks located in the UV and visible regions from 400 to 800 nm with optical band gaps at 1.55–2.10 eV, which fit near the wavelength of the maximum solar photon reflux. Electrochemical experiments displayed that the reversible p‐ and n‐doping processes of copolymers were partially reversible, and the proper HOMO/LUMO levels enabled a high photovoltaic open‐circuit voltage. As blended with [6,6]‐phenyl C61 butyric acid methyl ester (PCBM) as an electron acceptor in bulk heterojunction photovoltaic devices, narrow‐band‐gap polymers P1 ‐ P12 as electron donors showed significant photovoltaic performance which varied with the intramolecular donor‐acceptor interaction and their mixing ratios to PCBM. Under 100 mW/cm2 of AM 1.5 white‐light illumination, the device of copolymer P12 produced the highest preliminary result having an open‐circuit voltage of 0.64 V, a short‐circuit current of 2.70 mA/cm2, a fill factor of 0.29, and an energy conversion efficiency of 0.51%. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4285–4304, 2008  相似文献   

11.
The synthesis of four alternating copolymers using benzo[2,1‐b;3,4‐b′]dithiophene (BDP) as the common donor unit is presented. Before the synthesis, theoretical calculations that we performed predicted that the incorporation of BDP, which consists of fused dithiophene units with a benzene ring, into these polymers would produce a low‐lying highest occupied molecular orbital (HOMO) energy level. Low‐lying HOMO levels are desirable to produce high open circuit voltages (VOC) in organic bulk heterojunction (BHJ) photovoltaic devices. The polymers' structural characterization, as well as the preliminary results of their performance in BHJ devices, using (6,6)‐phenyl C61‐butyric acid methyl ester as the electron acceptor, is presented. The VOC values follow the expected trend: increasing with decreasing HOMO level of the polymer. High VOC values of 0.81 and 0.82 V have been obtained from two polymers: PBDPBT and PBDPDPP. The initial power conversion efficiency achieved in these unoptimized devices was 1.11% because of relatively low JSC values. The variation observed in the JSC values between the four polymers is discussed. Device performance is expected to increase with optimization of processing conditions for the devices. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
Novel conjugated polymers composed of benzo[1,2‐b:4,5‐b′]dithiophene and thieno[3,4‐b]pyrazine or dithieno[3′,2′:3,4;2″,3″:5,6]benzo[1,2‐d]imidazole units are synthesized by Stille polycondensation. The resulting polymers display a longer wavelength absorption and well‐defined redox activities. The effective intramolecular charge‐transfer and energy levels of all polymers are elucidated by computational calculations. Bulk‐heterojunction solar cells based on these polymers as p‐type semiconductors and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) as an n‐type semiconductor are fabricated, and their photovoltaic performances are for the first time evaluated. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1067–1075  相似文献   

13.
We have synthesized a narrow‐bandgap conjugated polymer ( PCTDPP ) containing alternating cyclopentadithiophene (CT) and diketo‐pyrrolo‐pyrrole (DPP) units by Suzuki coupling. This PCTDPP exhibits a low band gap of 1.31 eV and a broad absorption band from 350 to 1000 nm, which allows it to absorb more available photons from sunlight. A bulk heterojunction polymer solar cell incorporating PCTDPP and C70 at a blend ratio of 1:3 exhibited a high short‐circuit current of 10.87 mA/cm2 and a power conversion efficiency of 2.27%. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1669–1675, 2010  相似文献   

14.
Polymers consisting of benzo[1,2‐b:4,5‐b′]dithiophene and thieno[3,4‐b]thiophene units (PTB‐based polymers), either fully or partially containing 4‐fluorophenyl pendants, are synthesized as electron donor materials for inverted‐type polymer solar cells (PSCs). The influence of the 4‐fluorophenyl pendant content on the thermal and optical properties, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), the hole mobilities, and photovoltaic performances are investigated. As the 4‐fluorophenyl pendant content increased, the HOMO and LUMO of the polymers were deepened proportionally and the open‐circuit voltages of the PSCs improved. Incorporation of 4‐fluorophenyl pendants into the polymers also affected the crystallinity, orientation, and compatibility with [6,6]‐phenyl‐C61‐butyric acid methyl ester in the active layers, leading to nonlinearities in the short‐circuit current densities, and fill factors. The incorporation of an appropriate number of 4‐fluorophenyl pendants enhanced the power conversion efficiencies of the PSC devices from 2.25 to 3.96% for identical device configurations. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1586–1593  相似文献   

15.
Two donor–acceptor conjugated polymers, PTSSO‐TT and PTSSO‐BDT, composed of acenaphtho[1,2‐c]thiophene ‐ S,S‐dioxide (TSSO) as a new electron acceptor and thienothiophene (TT) or benzo[1,2‐b:4,5‐b']dithiophene (BDT) as electron donors, were synthesized with Stille cross‐coupling reactions. The number‐averaged molecular weights (Mn) of PTSSO‐TT and PTSSO‐BDT were found to be 15100 and 26000 Da, with dispersity of 1.8 and 2.4, respectively. The band‐gap energies of PTSSO‐TT and PTSSO‐BDT are 1.56 and 1.59 eV, respectively. The HOMO levels of PTSSO‐TT and PTSSO‐BDT are ?5.4 and ?5.5 eV, respectively. These results indicate that the inclusion of TSSO accepting units into polymers is a very effective method for lowering their HOMO energy levels. The field‐effect mobilities of PTSSO‐TT and PTSSO‐BDT were determined to be 1.5 × 10?3 and 4.5 × 10?4 cm2 V?1 s?1, respectively. A polymer solar cell device prepared with PTSSO‐TT as the active layer was found to exhibit a power conversion efficiency (PCE) of 3.79% with an open circuit voltage of 0.71 V under AM 1.5 G (100 mW cm?2) conditions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 498–506  相似文献   

16.
A new heteroarylene‐vinylene donor–acceptor polymer P(BDT‐V‐BTD) with reduced bandgap has been synthesized and its photophysical, electronic and photovoltaic properties investigated both experimentally and theoretically. The structure of the polymer comprises an unprecedented combination of a strong donor (4,8‐dialkoxy‐benzo[1,2‐b:4,5‐b']dithiophene, BDT), a strong acceptor (2,1,3‐benzothiadiazole, BTD) and a vinylene spacer. The new polymer was obtained by a metal‐catalyzed cross‐coupling Stille reaction and fully characterized by NMR, UV–vis absorption, GPC, TGA, DSC and electrochemistry. Detailed ab initio computations with solvation effects have been performed for the monomer and model oligomers. The electrochemical investigation has ascertained the ambipolar character of the polymer and energetic values of HOMO, LUMO and bandgap matching materials‐design rules for optimized organic photovoltaic devices. The HOMO and LUMO energies are consistently lower than those of previous heteroarylene‐vinylene polymer while the introduction of the vinylene spacer afforded lower bandgaps compared to the analogous system P(BDT‐BTD) with no spacer between the aromatic rings. These superior properties should allow for enhanced photovoltages and photocurrents in photovoltaic devices in combination with PCBM. Preliminary photovoltaic investigation afforded relatively modest power conversion efficiencies of 0.74% (AM 1.5G, 100 mW/cm2), albeit higher than that of previous heteroarylene‐vinylene polymers and comparable to that of P(BDT‐BTD). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
A series of new low‐band gap copolymers based on dioctyloxybenzo[1,2‐b;3,4‐b′] dithiophene and bis(2‐thienyl)‐2,3‐diphenylbenzo[g]quinoxaline monomers have been synthesized via a Stille reaction. The effect of different functional groups attached to bis(2‐thienyl)‐2,3‐diphenylbenzo[g]quinoxaline was investigated and compared with their optical, electrochemical, hole mobility, and photovoltaic properties. Polymer solar cell (PSC) devices of the copolymers were fabricated with a configuration of ITO/ PEDOT: PSS/copolymers: PCBM (1:4 wt ratio)/Ca/Al. The best performance of the PSC device was obtained by using PbttpmobQ as the active layer. A power conversion efficiency of 1.42% with an open‐circuit voltage of 0.8 V, a short‐circuit current (JSC) of 5.73 mA cm−2, and a fill factor of 30.9% was achieved under the illumination of AM 1.5, 100 mW cm−2. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Novel π‐conjugated polymers ( 8 – 10 ) were prepared by the palladium‐catalyzed Sonogashira coupling reaction of three kinds of phosphole‐ring‐containing monomers with 2,5‐dihexyloxyl‐1,4‐diethynylbenzene. The obtained polymers ( 8 – 10 ) were regioregulated with the 2,5‐substituted phosphole ring in the polymer main chain and characterized with 1H, 13C, and 31P NMR and FTIR. Polymers 8 – 10 were found to have an extended π‐conjugated system according to the results of UV–vis absorption spectra. In the fluorescence emission spectra of 8 – 10 , moderate emission peaks were observed in the visible blue‐to‐green region. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2867–2875, 2007  相似文献   

19.
20.
In this study, we synthesized a new polymer, PCTDBI , containing alternating carbazole and thiadiazole‐benzoimidazole (TDBI) units. This polymer (number‐average molecular weight = 25,600 g mol?1), which features a planar imidazole structure into the polymeric main chain, possesses reasonably good thermal properties (Tg = 105 °C; Td = 396 °C) and an optical band gap of 1.75 eV that matches the maximum photon flux of sunlight. Electrochemical measurements revealed an appropriate energy band offset between the polymer's lowest unoccupied molecular orbital and that of PCBM, thereby allowing efficient electron transfer between the two species. A solar cell device incorporating PCTDBI and PCBM at a blend ratio of 1:2 (w/w) exhibited a power conversion efficiency of 1.20%; the corresponding device incorporating PCTDBI and PC71BM (1:2, w/w) exhibited a PCE of 1.84%. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号