首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Computing the extremal eigenvalue bounds of interval matrices is non‐deterministic polynomial‐time (NP)‐hard. We investigate bounds on real eigenvalues of real symmetric tridiagonal interval matrices and prove that for a given real symmetric tridiagonal interval matrices, we can achieve its exact range of the smallest and largest eigenvalues just by computing extremal eigenvalues of four symmetric tridiagonal matrices.  相似文献   

2.
The LBLT factorization of Bunch for solving linear systems involving a symmetric indefinite tridiagonal matrix T is a stable, efficient method. It computes a unit lower triangular matrix L and a block 1 × 1 and 2 × 2 matrix B such that T=LBLT. Choosing the pivot size requires knowing a priori the largest element σ of T in magnitude. In some applications, it is required to factor T as it is formed without necessarily knowing σ. In this paper, we present a modification of the Bunch algorithm that can satisfy this requirement. We demonstrate that this modification exhibits the same bound on the growth factor as the Bunch algorithm and is likewise normwise backward stable. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
The pivoting strategy of Bunch and Marcia for solving systems involving symmetric indefinite tridiagonal matrices uses two different methods for solving 2 × 2 systems when a 2 × 2 pivot is chosen. In this paper, we eliminate this need for two methods by adding another criterion for choosing a 1 × 1 pivot. We demonstrate that all the results from the Bunch and Marcia pivoting strategy still hold. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, we give some structured perturbation bounds for generalized saddle point matrices and Hermitian block tridiagonal matrices. Our bounds improve some existing ones. In particular, the proposed bounds reveal the sensitivity of the eigenvalues with respect to perturbations of different blocks. Numerical examples confirm the theoretical results.  相似文献   

5.
在给定部分特征值、部分特征向量及附加条件下提出了一类反问题,并给出了此问题解存在性的证明及求解的算法.  相似文献   

6.
In applications of linear algebra including nuclear physics and structural dynamics, there is a need to deal with uncertainty in the matrices. We focus on matrices that depend on a set of parameters ω and we are interested in the minimal eigenvalue of a matrix pencil ( A , B ) with A , B symmetric and B positive definite. If ω can be interpreted as the realization of random variables, one may be interested in statistical moments of the minimal eigenvalue. In order to obtain statistical moments, we need a fast evaluation of the eigenvalue as a function of ω . Because this is costly for large matrices, we are looking for a small parameterized eigenvalue problem whose minimal eigenvalue makes a small error with the minimal eigenvalue of the large eigenvalue problem. The advantage, in comparison with a global polynomial approximation (on which, e.g., the polynomial chaos approximation relies), is that we do not suffer from the possible nonsmoothness of the minimal eigenvalue. The small‐scale eigenvalue problem is obtained by projection of the large‐scale problem. Our main contribution is that, for constructing the subspace, we use multiple eigenvectors and derivatives of eigenvectors. We provide theoretical results and document numerical experiments regarding the beneficial effect of adding multiple eigenvectors and derivatives.  相似文献   

7.
In this paper, we obtain lower and upper bounds for the entries of the inverses of diagonally dominant tridiagonal matrices. First of all we derive the bounds for off-diagonal elements of the inverse as a function of the diagonal ones, then we improve the two-sided bounds for the diagonal entries obtaining sharper lower and upper bounds for all the elements of the inverse.  相似文献   

8.
In this paper we construct the symmetric quasi anti-bidiagonal matrix that its eigenvalues are given, and show that the problem is also equivalent to the inverse eigenvalue problem for a certain symmetric tridiagonal matrix which has the same eigenvalues. Not only elements of the tridiagonal matrix come from quasi anti-bidiagonal matrix, but also the places of elements exchange based on some conditions.  相似文献   

9.
This work is concerned with exploring the upper bounds and lower bounds of the eigenvalues of real symmetric matrices of order n whose entries are in a given interval. It gives the maximum and minimum of the eigenvalues and the upper bounds of spread of real symmetric interval matrices in all cases. It also gives the answers of the open problems for the maximum and minimum of the eigenvalues of real symmetric interval matrices. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
We present new algorithms that accelerate the bisection method for the symmetric tridiagonal eigenvalue problem. The algorithms rely on some new techniques, including a new variant of Newton's iteration that reaches cubic convergence (right from the start) to the well separated eigenvalues and can be further applied to acceleration of some other iterative processes, in particular, of the divide-and-conquer methods for the symmetric tridiagonal eigenvalue problem. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
讨论了由四个特征对构造相应的三对角对称矩阵或Jacobi矩阵问题,得到了问题有唯一解的充要条件及解的表达式,并给出数值例子。  相似文献   

12.
对称三对角线特征值问题的一个并行修正拟Laguerre算法   总被引:1,自引:0,他引:1  
在拟Laguerre算法的基础上,提出了用修正拟Lagureer算法来求求解对称三角线特征值问题,并给出了算法的并行实现。  相似文献   

13.
We derive new perturbation bounds for eigenvalues of Hermitian matrices with block tridiagonal structure. The main message of this paper is that an eigenvalue is insensitive to blockwise perturbation, if it is well-separated from the spectrum of the diagonal blocks nearby the perturbed blocks. Our bound is particularly effective when the matrix is block-diagonally dominant and graded. Our approach is to obtain eigenvalue bounds via bounding eigenvector components, which is based on the observation that an eigenvalue is insensitive to componentwise perturbation if the corresponding eigenvector components are small. We use the same idea to explain two well-known phenomena, one concerning aggressive early deflation used in the symmetric tridiagonal QR algorithm and the other concerning the extremal eigenvalues of Wilkinson matrices.  相似文献   

14.
文[1][2][3]中讨论AX=B的对称阵逆特征值问题,文[4][5][6]中讨论了半正定阵的逆特征值问题。本文讨论了空间了子空间上的对称正定及对称半正定阵的左右特征值反问题,给出了解存在的充分条件及解的表达式。  相似文献   

15.
Based on the theory of inverse eigenvalue problem, a correction of an approximate model is discussed, which can be formulated as NX=XΛ, where X and Λ are given identified modal and eigenvalues matrices, respectively. The solvability conditions for a symmetric skew-Hamiltonian matrix N are established and an explicit expression of the solutions is derived. For any estimated matrix C of the analytical model, the best approximation matrix to minimize the Frobenius norm of C − N is provided and some numerical results are presented. A perturbation analysis of the solution is also performed, which has scarcely appeared in existing literatures. Supported by the National Natural Science Foundation of China(10571012, 10771022), the Beijing Natural Science Foundation (1062005) and the Beijing Educational Committee Foundation (KM200411232006, KM200611232010).  相似文献   

16.
In this paper, the computation of eigenvalue bounds for generalized interval eigenvalue problem is considered. Two algorithms based on the properties of continuous functions are developed for evaluating upper and lower eigenvalue bounds of structures with interval parameters. The method can provide the tightest bounds within a given precision. Numerical examples illustrate the effectiveness of the proposed method.  相似文献   

17.
In this paper, two accelerated divide‐and‐conquer (ADC) algorithms are proposed for the symmetric tridiagonal eigenvalue problem, which cost O(N2r) flops in the worst case, where N is the dimension of the matrix and r is a modest number depending on the distribution of eigenvalues. Both of these algorithms use hierarchically semiseparable (HSS) matrices to approximate some intermediate eigenvector matrices, which are Cauchy‐like matrices and are off‐diagonally low‐rank. The difference of these two versions lies in using different HSS construction algorithms, one (denoted by ADC1) uses a structured low‐rank approximation method and the other (ADC2) uses a randomized HSS construction algorithm. For the ADC2 algorithm, a method is proposed to estimate the off‐diagonal rank. Numerous experiments have been carried out to show their stability and efficiency. These algorithms are implemented in parallel in a shared memory environment, and some parallel implementation details are included. Comparing the ADCs with highly optimized multithreaded libraries such as Intel MKL, we find that ADCs could be more than six times faster for some large matrices with few deflations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
By adopting a nice auxiliary transform of Markov operators, we derive new bounds for the first eigenvalue of the generator corresponding to symmetric Markov processes. Our results not only extend the related topic in the literature, but also are efficiently used to study the first eigenvalue of birth-death processes with killing and that of elliptic operators with killing on half line. In particular, we obtain two approximation procedures for the first eigenvalue of birth-death processes with killing, and present qualitatively sharp upper and lower bounds for the first eigenvalue of elliptic operators with killing on half line.  相似文献   

19.
Yin Caixia;Li Chaoqian(College of Mathematics and Statistics,Yunnan University,Kunming 650500,China)  相似文献   

20.
Let s 1, ..., s n be arbitrary complex scalars. It is required to construct an n × n normal matrix A such that s i is an eigenvalue of the leading principal submatrix A i , i = 1, 2, ..., n. It is shown that, along with the obvious diagonal solution diag(s 1, ..., s n ), this problem always admits a much more interesting nondiagonal solution A. As a rule, this solution is a dense matrix; with the diagonal solution, it shares the property that each submatrix A i is itself a normal matrix, which implies interesting connections between the spectra of the neighboring submatrices A i and A i + 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号