首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Novel epoxy nanocomposites based on a diglycidyl ether of bisphenol A (DGEBA) epoxy, an epoxy functionalized hyperbranched polymer (HTTE) and nano‐Al2O3 were synthesized with the aim of determining the effect of the nano‐Al2O3 particles and HTTE on the structure and properties of epoxy nanocomposites. The mechanical properties, thermal conductivity, bulk resistivity, and thermal stability of the nano‐Al2O3/HTTE/DGEBA ternary composites were evaluated and compared with the corresponding matrix. The improvement in impact properties of these nanocomposites was explained in terms of fracture surface analysis by SEM. The results indicate that the incorporation of nanoparticles and hyperbranched epoxy effectively improved the toughness of epoxy composites without sacrificing thermal conductivity and bulk resistivity compared to the neat epoxy and Al2O3/DGEBA, obtaining a well dispersion of nanoparticles in epoxy matrix and solving the drawbacks for single fillers filled epoxy nanocomposite. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Thermo‐mechanically durable industrial polymer nanocomposites have great demand as structural components. In this work, highly competent filler design is processed via nano‐modified of micronic SiO2/Al2O3 particulate ceramics and studied its influence on the rheology, glass transition temperature, composite microstructure, thermal conductivity, mechanical strength, micro hardness, and tribology properties. Composites were fabricated with different proportions of nano‐modified micro‐composite fillers in epoxy matrix at as much possible filler loadings. Results revealed that nano‐modified SiO2/Al2O3 micro‐composite fillers enhanced inter‐particle network and offer benefits like homogeneous microstructures and increased thermal conductivity. Epoxy composites attained thermal conductivity of 0.8 W/mK at 46% filler loading. Mechanical strength and bulk hardness were reached to higher values on the incorporation of nano‐modified fillers. Tribology study revealed an increased specific wear rate and decreased friction coefficient in such fillers. The study is significant in a way that the design of nano‐modified mixed‐matrix micro‐composite fillers are effective where a high loading is much easier, which is critical for achieving desired thermal and mechanical properties for any engineering applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Nano/micro ceramic‐filled epoxy composite materials have been processed with various percentage additions of SiO2, Al2O3 ceramic fillers as reinforcements selected from the nano and micro origin sources. Different types of filler combinations, viz. only nano, only micro, nano/micro, and micro/micro particles, were designed to investigate their influence on the thermal expansion, thermal conductivity, and dielectric properties of epoxy polymers. Thermal expansion studies were conducted using thermomechanical analysis that revealed a two‐step expansion pattern consecutively before and after vitreous transition temperatures. The presence of micro fillers have shown vitreous transition temperature in the range 70–80°C compared with that of nano structured composites in which the same was observed as ~90°C. Similarly, the bulk thermal conductivity is found to increase with increasing percentage of micron‐size Al2O3. It was established that the addition of micro fillers lead to epoxy composite materials that exhibited lower thermal expansion and higher thermal conductivity compared with nano fillers. Moreover, nano fillers have a significantly decisive role in having low bulk dielectric permittivity. In this study, epoxy composites with a thermal expansion coefficient of 2.5 × 10?5/K, thermal conductivity of 1.18 W/m · K and dielectric permittivity in the range 4–5 at 1 kHz have been obtained. The study confirms that although the micro fillers seem to exhibit good thermal conductivity and low expansion coefficient, the nano‐size ceramic fillers are candidate as cofillers for low dielectric permittivity. However, a suitable proportion of nano/micro‐mixed fillers is necessary for achieving epoxy composites with promising thermal conductivity, controlled coefficient of thermal expansion and dielectric permittivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
This current study aimed to enhance the thermal conductivity of thin film composites without compromising other polymer qualities. The effect of adding high thermal conductivity nanoparticles on the thermal properties and moisture absorption of thin film epoxy composites was investigated. Three types of fillers in nanosize with high thermal conductivity properties, boron nitride (BN), synthetic diamond (SD), and silicon nitride (Si3N4) were studied. SN was later used as an abbreviation for Si3N4. The contents of fillers varied between 0 and 2 vol.%. An epoxy nanocomposite solution filled with high thermal conductivity fillers was spun at 1500–2000 rpm to produce thin film 40–60 µm thick. The effects of the fillers on thermal properties and moisture absorption were studied. The addition of 2 vol.% SD produced the largest improvement with 78% increment in thermal conductivity compared with the unfilled epoxy. SD‐filled epoxy thin film also showed good thermal stability with the lowest coefficients of thermal expansion, 19 and 124 ppm, before and after Tg, respectively, which are much lower compared with SN‐filled and BN‐filled epoxy thin film composites. However the SD‐filled epoxy film has its drawback as it absorbs more moisture compared with BN‐filled and SN‐filled epoxy film. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Methacrylic acid (MAA) was used as in situ surface modifier to improve the interface interaction between nano‐CaCO3 particle and ethylene–propylene–diene monomer (EPDM) matrix, and hence the mechanical properties of nano‐CaCO3‐filled EPDM vulcanizates. The results showed that the incorporation of MAA improved the filler–matrix interaction, which was proved by Fourier transformation infrared spectrometer (FTIR), Kraus equation, crosslink density determination, and scanning electron microscope (SEM). The formation of carboxylate and the participation of MAA in the crosslinking of EPDM indicated the strong filler–matrix interaction from the aspect of chemical reaction. The results of Kraus equation showed that the presence of MAA enhanced the reinforcement extent of nano‐CaCO3 on EPDM vulcanizates. Crosslink density determination proved the formation of the ionic crosslinks in EPDM vulcanizates with the existence of MAA. The filler particles on tensile fracture were embedded in the matrix and could not be observed obviously, indicating that a strong interfacial interaction between the filler and the matrix had been achieved with the incorporation of MAA. Meanwhile, the presence of MAA remarkably increased the modulus and tensile strength of the vulcanizates, without negative effect on the high elongation at break. Furthermore, the ionic bond was thought to be formed only on filler surface because of the absolute deficiency of MAA, which resulted in the possible structure where filler particles were considered as crosslink points. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1226–1236, 2006  相似文献   

6.
Epoxy/SiO2 nanocomposite materials were prepared by cationic photopolymerization and sol–gel process using a novel epoxy oligomer (EP‐Si(OC2H5)3) prepared by 3‐isocyanatopropyltriethoxysilane (IPTS)‐grafted bisphenol A epoxy resin and tetraethyl orthosilicate as inorganic precursor. The chemical structures of EP‐Si(OC2H5)3 were characterized by Fourier transformed infrared spectroscopy. Transmission electron microscopy showed that the in situ generated nano‐SiO2 dispersed uniformly in the EP matrix, and its average diameter is around 40 nm. The relationship between nanocomposite materials' thermal/mechanical properties and nano‐SiO2 introduced were studied by thermogravimetric analysis, dynamic mechanical analysis, and impact strength test. The results showed that the nanocomposite materials' thermal and mechanical properties improved a lot with increase of the SiO2 content. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
In order to enhance dielectric properties and energy storage density of poly(vinylidene fluoride‐hexafluoro propylene) (PVDF‐HFP), surface charged gas‐phase Al2O3 nanoparticles (GP‐Al2O3, with positive surface charges, ε’ ≈ 10) are selected as fillers to fabricate PVDF‐HFP‐based composites via simple physical blending and hot‐molding techniques. The results show that GP‐Al2O3 are dispersed homogeneously in the PVDF‐HFP matrix and the existence of nanoscale interface layer (matrix‐filler) is investigated by SAXS. The dielectric constant of the composites filled with 10 wt % GP‐Al2O3 is 100.5 at 1 Hz, which is 5.6 times higher than that of pure PVDF‐HFP. The maximum energy storage density of the composite is 4.06 J cm?3 at an electrical field of 900 kV mm?1 with GP‐Al2O3 content of 1 wt %. Experimental results show that GP‐Al2O3 could induce uniform fillers’ distribution and increase the concentration of electroactive β‐phase as well as enhance interfacial polarization in the matrix, which resulted in enhancements of dielectric constant and energy storage density of the PVDF‐HFP composites. This work demonstrates that surface charged inorganic‐oxide nanoparticles exhibit promising potential in fabricating ferroelectric polymer composites with relatively high dielectric constant and energy storage. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 574–583  相似文献   

8.
Reactive melt blends of an ethylene‐propylene‐diene terpolymer (EPDM) based thermoplastic elastomer (TPE), maleic anhydride grafted polypropylene (MAH‐g‐PP), and nylon 6 were prepared in a single screw extruder and evaluated in terms of morphological, rheological, thermal, dynamic mechanical, and mechanical properties of the blends. It was found that MAH‐g‐PP‐co‐nylon 6 copolymers were in situ formed and acted as effective compatibilizers for polypropylene (PP) and nylon 6. Phase separation of PP and EPDM in TPE increased with the addition and increasing amount of MAH‐g‐PP and nylon 6, leading to decreased glass transition temperature (Tg) of TPE and increased crystalline melting temperature (Tm) of PP. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Polyvinyl formal (PVFM)‐based dense polymer membranes with nano‐Al2O3 doping are prepared via phase inversion method. The membranes and also their performances as gel polymer electrolytes (GPEs) for lithium ion battery are studied by field emission scanning electron microscope, X‐ray diffraction, differential scanning calorimetry, mechanical strength test, electrolyte uptake test, electrochemical impedance spectroscopy, cyclic voltammetry, and charge–discharge test. The polymer membrane with 3 wt % nano‐Al2O3 doping shows the improved mechanical strength of 12.16 MPa and electrolyte uptake of 431.25% compared with 10.47 MPa and 310.59% of the undoped sample, respectively. The membrane absorbs and swells liquid electrolyte to form stable GPE with ionic conductivity of 4.92 × 10?4 S cm?1 at room temperature, which is higher than 1.77 × 10?4 S cm?1 of GPE from the undoped membrane. Moreover, the Al2O3‐modified membrane supporting GPE exhibits wide electrochemical stability window of 1.2–4.8 V (vs. Li/Li+) and good compatibility with LiFePO4 electrode, which implies Al2O3‐modified PVFM‐based GPE to be a promising candidate for lithium ion batteries. © 2014 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 572–577  相似文献   

10.
Phase change nanocomposites were prepared by dispersing γ-Al2O3 nanoparticles into melting paraffin wax (PW). Intensive sonication was used to make well dispersed and homogeneous composites. Differential scanning calorimetric (DSC) and transient short-hot-wire (SHW) method were employed to measure the thermal properties of the composites. The composites decreased the latent heat thermal energy storage capacity, L s, and melting point, T m, compared with those of the PW. Interestingly, the composites with low mass fraction of the nanoparticles, have higher latent heat capacity than the calculated latent heat capacity value. The thermal conductivity of the nanocomposites was enhanced and increased with the mass fraction of Al2O3 in both liquid state and solid state.  相似文献   

11.
A series of waterborne polyurethane (WBPU)/multiwalled carbon nanotube (CNT) and WBPU/nitric acid treated multiwalled carbon nanotube (A‐CNT) composites were prepared by in situ polymerization in an aqueous medium. The optimum nitric acid treatment time was about 0.5 h. The effects of the CNT and A‐CNT contents on the dynamic mechanical thermal properties, mechanical properties, hardness, electrical conductivity, and antistatic properties of the two kinds of composites were compared. The tensile strength and modulus, the glass‐transition temperatures of the soft and hard segments (Tgs and Tgh, respectively), and ΔTg (TghTgs) of WBPU for both composites increased with increasing CNT and A‐CNT contents. However, these properties of the WBPU/A‐CNT composites were higher than those of the WBPU/CNT composites with the same CNT content. The electrical conductivities of the WBPU/CNT1.5 and WBPU/A‐CNT1.5 composites containing 1.5 wt % CNTs (8.0 × 10−4 and 1.1 × 10−3 S/cm) were nearly 8 and 9 orders of magnitude higher than that of WBPU (2.5 × 10−12 S/cm), respectively. The half‐life of the electrostatic charge (τ1/2) values of the WBPU/CNT0.1 and WBPU/A‐CNT0.1 composites containing 0.1 wt % CNTs were below 10 s, and the composites had good antistatic properties. From these results, A‐CNT was found to be a better reinforcer than CNT. These results suggest that WBPU/A‐CNT composites prepared by in situ polymerization have high potential as new materials for waterborne coatings with good physical, antistatic, and conductive properties. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3973–3985, 2005  相似文献   

12.
Polyamide 6/ZnO nanocomposites (noted as PA6/ZnO) were prepared by an in situ co‐producing method, during which Zn2(OH)2CO3 decomposed into nano‐ZnO in the process of the opening‐ring polymerization of caprolactam at high temperature. Transmission electron microscopy, X‐ray diffraction, thermogravimetric analysis, and differential scanning calorimetry were used to analyze the size and dispersive properties of nano‐ZnO, the crystallization and melting properties, the thermal properties, and crystal structure of PA6/ZnO composite, respectively. The results showed that the nano‐ZnO derived from Zn2(OH)2CO3 via in situ polymerization of PA6‐ZnO was uniformly dispersed in PA6 matrix. However, the overall nano‐ZnO crystallization rate and crystal size in the PA6 matrix were hindered by the bulky PA6 molecular chains. The mechanical properties were evaluated using universal tensile and impact testing instruments. The results revealed that PA6/ZnO composite with 0.2% nano‐ZnO content possessed excellent tensile strength, enhanced by 75% in comparison with the pure PA6. The nano‐ZnO had little influence on the impact strength of PA6. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 165–170  相似文献   

13.
《印度化学会志》2022,99(11):100772
The incorporation of transition metal oxide fillers into the polymer matrix through solution mixing polymerization imparts enhanced electrical and thermal properties. The present work focused on the optical properties, crystallinity, thermal stability, temperature-dependent conductivity, dielectric constant and modulus of chlorinated polyethylene/copper alumina (CPE/Cu–Al2O3) nanocomposites. Optical absorption measured using an ultraviolet–visible (UV–visible) spectrometer shows enhanced intensity and a blue shift for CPE/Cu–Al2O3 nanocomposites. The bandgap energy of CPE/Cu–Al2O3 nanocomposites was lower than pure CPE and minimum bandgap energy was recorded for a 7 wt% composites. The X-ray diffraction demonstrates that Cu–Al2O3 nanoparticles were uniformly introduced into the CPE matrix. Thermogravimetric analysis (TGA) manifests improved thermal stability of nanocomposites. Dielectric properties decrease with frequency, whereas AC conductivity increases with frequency, and both AC conductivity and dielectric properties increase with temperature. The maximum AC conductivity and dielectric constant were obtained for 7 wt % nanofiller loaded sample. For all systems, the activation energy for electrical conductivity decreases with rising temperatures. The experimental dielectric constant values of CPE nanocomposites were correlated with different theoretical models. The Bruggeman model was in good agreement with the experimental permittivity. The impedance experiments showed a decreasing trend with temperature, indicating the semiconducting nature of prepared nanocomposites.  相似文献   

14.
Three kinds of sulfonated poly(ether ether ketone) (SPEEK)/nano oxide (Al2O3, SiO2, and TiO2) composite membranes are fabricated for vanadium redox flow battery (VRFB) application. The composite membranes with 5 wt% of Al2O3, SiO2, and TiO2 (S/A-5 %, S/S-5 %, and S/T-5 %) exhibit excellent cell performance in VRFB. Incorporation of nano oxides (Al2O3, SiO2, and TiO2) in SPEEK membrane improves in aspect of thermal, mechanical, and chemical stabilities due to the hydrogen bonds’ interaction between SPEEK matrix and nano oxides. The energy efficiencies (EEs) of composite membranes are higher than that of Nafion 117 membrane, owing to the good balance between proton conductivity and vanadium ion permeability. The discharge–capacity retentions of composite membranes also overwhelm that of Nafion 117 membrane after 200 cycles, indicating their good stability in VRFB system. These low-cost SPEEK/nano oxide composite membranes exhibit great potential for the application in VRFB.  相似文献   

15.
Herein, molecular dynamics simulations and experiments were carried to select solvent for the mechanical activation process. The interaction between solvent and each component of the Al‐PTFE mechanical activated energy composites has been studied by means of molecular dynamics. Then, the status of Al and PTFE in solvent was analyzed, and the microstructure of the composite was also studied combined with experiment. At last, the mechanical activated energy composites were prepared with n‐hexane as the solvent. The results show that the adsorption of PTFE, toluene, and hexane on the (0 0 1), (0 1 0), and (100) surface of Al2O3 is stable. Al2O3 (0 0 1) surface and Al2O3 (0 1 0) surface interact with 3 substances mainly via the electrostatic force. Al2O3 (1 0 0) surface interacts with 3 substances mainly via the van der Waals force. The binding energies of toluene‐Al2O3 and hexane‐Al2O3 are larger than PTFE‐Al2O3. PTFE cannot adsorb on the surface of aluminum in the existence of n‐hexane and toluene. n‐Hexane can make PTFE disperse uniformly, and a considerable part of these PTFE will be coated on the surface of Al after n‐hexane is removed. The uniformity of Al/PTFE mechanical activated energetic composites prepared in n‐hexane is good, and it increases with the milling time.  相似文献   

16.
The aim of this study is to investigate the effect of pH level and surface treatment of samarium oxide (Sm2O3), samarium borate (SmBO3) and Sb-doped SnO2 (ATO) particles on properties of peroxide-cured ethylene–propylene–diene rubber (EPDM) composites. The bis-(-3-(triethoxysilyl)propyl)tetra-sulfide (KH845-4) treated particles were added to EPDM at various filler contents. The pH values of particles, and cure, mechanical and electric properties of the EPDM composites were evaluated. It was found that alkaline SmBO3 particles would accelerate cure by producing more radicals from dicumyl peroxide (DCP), but acidic ATO particles would retard vulcanization because of making DCP generate less radicals, and neutral Sm2O3 particles did not affect the cure process. Moreover, sulfuric linkages from KH845-4 on the filler surface would provide sulfuric radicals to form S–C linkages. Therefore, composites with SmBO3 exhibited excellent mechanical properties. Additionally, polar fillers could reduce electrical properties of composites due to increased composite polarity.  相似文献   

17.
The elegant approach of in situ deposition technique was used for the synthesis of nano CaCO3. the nanosize of particles was confirmed by the X‐ray diffraction (XRD) technique. Differential scanning calorimetry (DSC) was used for determination of the enthalpy. The nano CaCO3 polypropylene (PP) composites were prepared by taking 2 and 10 wt % of different nanosizes (21–39 nm) of CaCO3. Conversion of the α phase to β was observed in the case of 2 wt % of a 30‐nm sized amount of CaCO3 in a PP composite. The decrement in ΔH and percent crystallinity, as well as the increment in melt temperature were recorded for 6 wt % nano CaCO3 with a decrease in nanosize from 39 to 21 nm. The increment in tensile strength with an increase in the amount of nano CaCO3 was observed, and the lower particle size showed greater improvement. The improvement in thermal and mechanical properties is because of the formation of a greater number of small spherulites uniformly present in the PP matrix. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 107–113, 2004  相似文献   

18.
Conductive elastomeric blends based on ethylene–propylene–5‐ethylidene–2‐norbornene terpolymer (EPDM) and polyaniline doped with 4‐dodecylbenzenesulfonic acid [PAni(DBSA)] were cast from organic solvents. Functionalization of the elastomer was promoted by grafting with maleic anhydride. Vulcanization conditions were optimized with an oscillating disk rheometer. The conductivity, morphology, thermal stability, compatibility, and mechanical behavior of the obtained mixtures were analyzed by in situ direct current conductivity measurements, atomic force microscopy, transmission electron microscopy, wide‐angle X‐ray scattering, thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical thermal analysis, stress–strain and hysteresis tests. The vulcanization process was affected by temperature, the PAni content, and maleic anhydride. A reinforcement effect was promoted by the vulcanizing agent. The formation of links between the high‐molar‐mass phases and oligomers of PAni(DBSA) in the elastomeric matrix enhanced the thermal stability and ultimate properties of the blends. By the appropriate control of the polymer blends' composition, it was possible to produce elastomeric materials with conductivities in the range of 10?5–10?4 S · cm?1 and excellent mechanical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1767–1782, 2004  相似文献   

19.
As‐received sepiolite/epoxy systems and Fe3O4‐doped sepiolite/epoxy systems were prepared, and the contents of sepiolite and Fe3O4‐doped sepiolite were kept as 2 and 4 wt%, respectively. Compared with sepiolite, the effect of Fe3O4‐doped sepiolite on the flame retardancy, combustion properties, thermal degradation, thermal degradation kinetics and thermomechanical properties of epoxy resin was investigated systematically by limiting oxygen index (LOI), cone calorimeter (Cone), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). Some interesting results had been acquired. The addition of sepiolite decreased heat release rate, total smoke production and smoke production rate, and obviously improved LOI values of epoxy composites. Compared with sepiolite, the addition of Fe3O4‐doped sepiolite further reduced parameters mentioned above of epoxy composites, and further enhanced LOI values and char residues after cone test. There might be a synergistic effect between sepiolite and Fe3O4 on flame retardant epoxy composite. TGA results indicated that the addition of sepiolite had a slight effect on the thermal degradation of epoxy composites; however, the addition of Fe3O4‐doped sepiolite accelerated the thermal degradation of epoxy composites. DMA results showed that the addition of both sepiolite and Fe3O4‐doped sepiolite increased the glass transition temperature (Tg) of epoxy composite. The results obtained in this paper supplied an effective solution for developing excellent flame retardant properties of polymeric materials. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
The sol‐gel reaction of tetraethoxysilane in natural rubber (NR) latex was conducted to produce in situ silica‐filled NR latex, followed by adding sulfur cross‐linking reagents to the latex in a liquid state. The latex was cast and subjected to sulfur curing to result in a unique morphology in the NR composite of a flexible film form. The contents of in situ silica filling were controlled up to 35 parts per one hundred rubber by weight. The silica was locally dispersed around rubber particles to give a filler network. This characteristic morphology brought about the composite of good dynamic mechanical properties. Synchrotron X‐ray absorption near‐edge structure spectroscopy suggested that the sulfidic linkages of the sulfur cross‐linked composites were polysulfidic, Sx (x ≥ 2), and a fraction of shorter polysulfidic linkages became larger with the increase of in situ silica. The present observations will be of use for developing a novel in situ silica‐filled NR composite prepared in NR latex via liquid‐phase soft processing. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号