首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The miscibility and phase behavior in a binary blend of isotactic polystyrene (iPS) and poly(cyclohexyl methacrylate) (PCHMA) were investigated by differential scanning calorimetry, optical microscopy (OM), and solid‐state 13C cross‐polarity/magic‐angle spinning NMR. The iPS/PCHMA blend was miscible when all compositions showed a single composition‐dependent glass‐transition temperature (Tg) and when the blend went through a thermodynamic phase transition upon heating to above the lower critical solution temperature as determined by OM measurements. The 1H NMR spin‐relaxation times in the laboratory frame (T) and in the rotating frame (T) for iPS/PCHMA blends with various compositions and neat components were directly measured through solid‐state13C NMR. The results of T indicated that the blends are homogeneous, at least on a scale of 75–85 nm, confirming the miscibility of the system. The single decay and composition‐dependent T values for each blend further demonstrated the blends are homogeneous on a scale of 2.5–3.5 nm. The results suggested that iPS and PCHMA are intimately mixed at the molecular level within the blends at all compositions. The tacticity of polystyrene does not seem to adversely influence the miscibility in blends of iPS/PCHMA. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 772–784, 2003  相似文献   

2.
Orientation angle and stress‐relaxation dynamics of entangled polystyrene (PS)/diethyl phthalate solutions were investigated in steady and step shear flows. Concentrated (19 vol %) solutions of 0.995, 1.81, and 3.84 million molecular weight (MW) PS and a semidilute (6.4 vol %) solution of 20.6 million MW PS were used to study the effects of entanglement loss on dynamics. A phase‐modulated flow birefringence apparatus was developed to facilitate measurements of time‐dependent changes in optical equivalents of shear stress (n12 ≈ Cσ) and first normal stress differences (n1 = n11 ? n22 ≈ CN1) in a planar‐Couette shear‐flow geometry. Flow birefringence results were supplemented with cone‐and‐plate mechanical rheometry measurements to extend the range of shear rates over which entangled polymer dynamics are studied. In slow > ) steady shear‐flow experiments using the ultrahigh MW polymer sample (20.6 × 106 MW PS), steady‐state n12 and n1 results manifest unusual power‐law dependencies on shear rate [n12,ss 0.4 and n1,ss 0.8]. At shear rates in the range τ < < τ, steady‐state orientation angles χSS are found to be nearly independent of shear rate for all but the most weakly entangled materials investigated. For solutions containing the highest MW PS, an approximate plateau orientation angle χp in the range 20–24° is observed; χp values ranging from 14 to 16° are found for the other materials. In the start‐up of fast steady shear flow ˙ ≥ τ), transient undershoots in orientation angle are also reported. The molecular origins of these observations were examined with the help of a tube model theory that accommodates changes in polymer entanglement density during flow. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2275–2289, 2001  相似文献   

3.
Asymmetric anionic homopolymerizations of N‐1‐naphthylmaleimide (1‐NMI) were performed with chiral ligand/organometal complexes to form optically active polymers. Poly(1‐NMI)s obtained with methylene‐bridged bisoxazoline derivatives (Rbox)‐diethylzinc (Et2Zn) complexes showed high specific optical rotations ([α]) from +152.3 to +191.4°. Circular dichroism spectra of the polymers exhibited a split Cotton effect in the UV absorption‐band region. According to the exciton chirality method, the absolute configuration of the polymer main chain was determined according to the following method: (+)‐poly[N‐substituted maleimides (RMI)] main chains can contain more (S,S)‐ than (R,R)‐configurations. (?)‐Poly(RMI) main chains can contain more (R,R)‐ than (S,S)‐configurations. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3556–3565, 2001  相似文献   

4.
A well‐defined branched copolymer with PLLA‐b‐PS2 branches was prepared by combination of reversible addition‐fragmentation transfer (RAFT) polymerization, ring‐opening polymerization (ROP), and atom transfer radical polymerization (ATRP). The RAFT copolymerization of methyl acrylate (MA) and hydroxyethyl acrylate (HEA) yielded poly(MA‐co‐HEA), which was used as macro initiator in the successive ROP polymerization of LLA. After divergent reaction of poly(MA‐co‐HEA)‐g‐PLLAOH with divergent agent, the macro initiator, poly(MA‐co‐HEA)‐g‐PLLABr2 was formed in high conversion. The following ATRP of styrene (St) produced the target polymer, poly(MA‐co‐HEA)‐g‐(PLLA‐b‐PS2). The structures, molecular weight, and molecular weight distribution of the intermediates and the target polymers obtained from every step were confirmed by their 1H NMR and GPC measurements. DSC results show one T = 3 °C for the poly(MA‐co‐HEA), T = ?5 °C, T= 122 °C, and T = 157 °C for the branched copolymers (poly(MA‐co‐HEA)‐g‐PLLA), and T = 51 °C, T = 116 °C, and T = 162 °C for poly(MA‐co‐HEA)‐g‐(PLLA‐b‐PS2). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 549–560, 2006  相似文献   

5.
Novel thermoplastic elastomers (TPEs) consisting of poly(isobutylene‐b‐indene) (PIB‐b‐PInd) arms radiating from hexamethylcyclohexasiloxane (D) cores were prepared, characterized, and their properties investigated. The syntheses of these star‐blocks involved the linking by hydrosilation of PInd‐b‐PIB CH2 CHCH2 prearms to D. The prearms were obtained by initiating the living polymerization of Ind by the cumyl chloride (CumCl)/TiCl4 or cumyl methoxide (CumOMe)/TiCl4 systems, continuing by the sequential block copolymerization of IB, and concluding the synthesis by end quenching with allyltrimethylsilane (ATMS). Dedicated experiments were carried out to develop conditions for the various synthesis steps. Select mechanical, thermal, and rheological properties of TPE star‐blocks having 5–18 PInd‐b‐PIB arms have been investigated. Because of the high Tg of the glassy PInd segment (Tg,PInd = 170–220°C), these TPEs maintained their strength at higher temperatures than those of similar polystyrene‐based star blocks. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 279–290, 2000  相似文献   

6.
Diazonium group–substituted polystyrene (PS–N) micrometer‐sized spheres with narrow distribution were prepared from highly crosslinked polystyrene particles. Then a composite sphere was prepared with the micro‐PS–N sphere as core and submicrometer‐sized poly(styrene‐methyl methacrylate‐acrylic acid) [P(S‐MMA‐AA)] colloids or nanometer‐sized SiO2 particles as shell via columbic interaction. The ionic linkages between the core and shell convert to covalent bonds in the thermal treatment process. As a result, the composite sphere becomes very stable toward polar solvents as well as toward ultrasonic treatment. A hollow SiO2 micrometer‐sized sphere then was achieved by removing the core under sintering conditions (700 °C). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4284–4288, 2004  相似文献   

7.
Crystallization of poly(trimethylene terephthalate) (PTT) by annealing was examined using density measurement, differential scanning calorimetry, and far‐infrared spectroscopy (FIR). Crystallinity, measured by density, increased slowly up to the Ta of 185 °C and increases rapidly once Ta exceeds 185 °C. It was found that thermally induced crystallization is mainly temperature‐dependent above Ta = 185 °C and temperature‐ and time‐dependent below Ta = 60 °C. Two melting transitions, T and T, were observed for those samples annealed above 120 °C. No significant change in T was observed as a function of Ta while T showed strong dependency on Ta. Digital subtraction of the amorphous contribution from the semicrystalline FIR spectra provided characteristic spectra of amorphous and crystalline PTT. The bands at 373, 282, and 92 cm?1 were assigned to the crystalline phase, while the bands at 525, 406, and 351 cm?1 were attributed to the amorphous phase. It was shown that FIR spectroscopy can be used as a means to estimate the degree of crystallinity of PTT. The band ratio of 373 and 501 cm?1 was plotted against crystallinity measured by density and reasonably good correlation was obtained. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1675–1682, 2007  相似文献   

8.
9.
(S)‐1‐Cyano‐2‐methylpropyl‐4′‐{[4‐(8‐vinyloxyoctyloxy)benzoyl]oxy}biphenyl‐ 4‐carboxylate [ (S)‐11 ] and (R)‐1‐cyano‐2‐methylpropyl‐4′‐{[4‐(8‐vinyloxyoctyloxy)benzoyl]oxy}biphenyl‐4‐carboxylate [( R)‐11 ] enantiomers, both greater than 99% enantiomeric excess, and their corresponding homopolymers, poly[ (S)‐11 ] and poly[ (R)‐11 ], with well‐defined molecular weights and narrow molecular weight distributions were synthesized and characterized. The mesomorphic behaviors of (S)‐11 and poly[ (S)‐11 ] are identical to those of (R)‐11 and poly[ (R)‐11 ], respectively. Both (S)‐11 and (R)‐11 exhibit enantiotropic SA, S, and SX (unidentified smectic) phases. The corresponding homopolymers exhibit SA and S phases. The homopolymers with a degree of polymerization (DP) less than 6 also show a crystalline phase, whereas those with a DP greater than 10 exhibit a second SX phase. Phase diagrams were investigated for four different pairs of enantiomers, (S)‐11 /( R)‐11 , (S)‐11 /poly[ (R)‐11 ], and poly[ (S)‐11 ]/poly[ (R)‐11 ], with similar and dissimilar molecular weights. In all cases, the structural units derived from the enantiomeric components are miscible and, therefore, isomorphic in the SA and S phases over the entire range of enantiomeric composition. Chiral molecular recognition was observed in the SA and SX phases of the monomers but not in the SA phase of the polymers. In addition, a very unusual chiral molecular recognition effect was detected in the S phase of the monomers below their crystallization temperature and in the S phase of the polymers below their glass‐transition temperature. In the S phase of the monomers above the melting temperature and of the polymers above the glass‐transition temperature, nonideal solution behavior was observed. However, in the SA phase the monomer–polymer and polymer–polymer mixtures behave as an ideal solution. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3631–3655, 2000  相似文献   

10.
Several random and block copolynorbornenes with side chains containing terminal hydroxyl, amino, methacryloyl or ammonium groups were derived from the functional alkyl ester‐containing norbornenes by ring‐opening metathesis polymerization (ROMP). The main chain of ROMP‐type polynorbornene had a more important role for glass‐transition temperature in comparison with vinyl addition polymerization. There is little effect on glass‐transition temperature (about ?39 °C) of polynorbornenes with different length of alkyl side chain. The organosoluble copolynorbornenes with active crosslinkable methylacryloyl side chains derived from functional hydroxyl group were prepared to improve the thermal stability of poly(methyl methacrylate) [decomposition temperature (Td)10% = 325 °C in nitrogen] by forming networked AB crosslinked polymer (T = 367 °C in nitrogen). The sizes of nanometer‐scale polymeric micelles of block copolymers having hydrophobic alkyl ester and hydrophilic ammonium groups were measured in the range of 11–25 nm by scanning electron microscopy. These polymeric materials with various functional groups or amphiphilic architectures are accessible by ROMP, whose topology makes them particularly attractive for application potential such as biomedical and photoelectric materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4233–4247, 2005  相似文献   

11.
Thermal analyses were performed for determining the equilibrium melting temperatures T of the respective α‐ and β‐crystal in melt‐crystallized polymorphic poly(heptamethylene terephthalate) (PHepT) using both linear and nonlinear Hoffman‐Weeks (H‐W) methods for comparison of validity. These two crystals in PHepT do not differ much in their melting temperatures. The equilibrium melting temperatures of the α‐ and β‐crystal as determined by the linear H‐W method are 98 °C and 100.1 °C, respectively; but the nonlinear H‐W method yielded higher values for both crystals. The equilibrium melting temperatures of the α‐ and β‐crystal according to the nonlinear H‐W method are 121 °C and 122.5 °C, respectively. Both methods consistently indicate that T of the β‐crystal is only slightly higher than that of the α‐crystal. Such small difference in T between the α‐ and the β‐crystal causes difficulties in judging the relative thermodynamic stability of these two crystals. Thus, kinetics of these two crystals was compared using the Avrami and Ozawa theory. The crystallization produced by quenching from Tmax = 110 °C and 150 °C shows a heterogeneous and homogeneous nucleation mechanism, respectively. The lower Tmax = 110 °C leads to heterogeneous nucleation and only α‐crystal in PHepT, whose crystallization rates at same Tc are much higher than crystallization rates by quenching from Tmax = 150 °C leading to either α‐ or β‐crystal with homogeneous nucleation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1839–1851, 2009  相似文献   

12.
Non‐transition metal‐catalyzed living radical polymerization (LRP) of vinyl chloride (VC) in water at 25–35 °C is reported. This polymerization is initiated with iodoform and catalyzed by Na2S2O4. In water, S2O dissociates into SO that mediates the initiation and reactivation steps via a single electron transfer (SET) mechanism. The exchange between dormant and active propagating species also includes the degenerative chain transfer to dormant species (DT). In addition, the SO2 released from SO during the SET process can add reversibly to poly(vinyl chloride) (PVC) radicals and provide additional transient dormant ~SO radicals. This novel LRP proceeds mostly by a combination of competitive SET and DT mechanisms and, therefore, it is called SET‐DTLRP. Telechelic PVC with a number‐average molecular weight (Mn) = 2,000–55,000, containing two active ~CH2? CHClI chain ends and a higher syndiotacticity than the commercial PVC were obtained by SET‐DTLRP. This PVC is free of structural defects and exhibits a higher thermal stability than commercial PVC. SET‐DTLRP of VC is carried out under reaction conditions related to those used for its commercial free‐radical polymerization. Consequently, SET‐DTLRP is of technological interest both as an alternative commercial method for the production of PVC with superior properties as well as for the synthesis of new PVC‐based architectures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6267–6282, 2004  相似文献   

13.
A new dialkylated α‐hydrogenated linear nitroxide and the corresponding 1‐phenylethyl alkoxyamine were synthesized in two and three steps, respectively. The alkoxyamine was involved in the polymerization of styrene at 60 °C, and the in situ concentration of nitroxide was monitored by electron spin resonance spectroscopy. The enhanced characteristics of these new alkylated alkoxyamine and nitroxide (k = 1.5 × 10?4 s?1 and k = 5.7 × 104 L mol?1 s?1) yielded a monomer consumption one order of magnitude higher than styrene thermal polymerization. This resulted in well‐defined polystyrenes up to 70,000 g mol?1 and the observation of a control occurring through the establishment of the radical persistent effect, that is, ln([M]0/[M]) = t2/3. Experimentally determined kinetic constants were involved in PREDICI modelings to investigate the influence of temperature and initial alkoxyamine concentration on the kinetics as well as on the livingness and the controlled character of the polymerization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Multipulse pulsed laser polymerization coupled with size exclusion chromatography (MP‐PLP‐SEC) has been employed to study the depropagation kinetics of the sterically demanding 1,1‐disubstituted monomer di(4‐tert‐butylcyclohexyl) itaconate (DBCHI). The effective rate coefficient of propagation, k, was determined for a solution of monomer in anisole at concentrations, c, 0.72 and 0.88 mol L?1 in the temperature range 0 ≤ T ≤ 70 °C. The resulting Arrhenius plot (i.e., ln k vs. 1/RT) displayed a subtle curvature in the higher temperature regime and was analyzed in the linear part to yield the activation parameters of the forward reaction. In the temperature region where no depropagation was observed (0 ≤ T ≤ 50 °C), the following Arrhenius parameters for kp were obtained (DBCHI, Ep = 35.5 ± 1.2 kJ mol?1, ln Ap = 14.8 ± 0.5 L mol?1 s?1). In addition, the k data was analyzed in the depropagatation regime for DBCHI, resulting in estimates for the associated entropy (?ΔS = 150 J mol?1 K?1) of polymerization. With decreasing monomer concentration and increasing temperature, it is increasingly more difficult to obtain well structured molecular weight distributions. The Mark Houwink Kuhn Sakurada (MHKS) parameters for di‐n‐butyl itaconate (DBI) and DBCHI were determined using a triple detection GPC system incorporating online viscometry and multi‐angle laser light scattering in THF at 40 °C. The MHKS for poly‐DBI and poly‐DBCHI in the molecular weight range 35–256 kDa and 36.5–250 kDa, respectively, were determined to be KDBI = 24.9 (103 mL g?1), αDBI = 0.58, KDBCHI = 12.8 (103 mL g?1), and αDBCHI = 0.63. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1931–1943, 2007  相似文献   

15.
Anhydrous, proton‐conducting polymer electrolytes of poly(vinylpyrrolidon) (PVP) with polyphosphoric acid (PPA) were prepared. PVP‐x‐PPA blends were obtained for 0.5 ≤ x ≤ 3, where x was the number of moles of PO per polymer repeat unit. Fourier transform infrared studies indicated protonation of the carbonyl group in the five‐member ring. Thermogravimetric analysis showed that these materials were stable up to about 180 °C. Differential scanning calorimetry data demonstrated that the addition of the acid plasticized the material, shifting the glass‐transition temperature from 180 °C for the pure polymer to ?23 °C for x = 3. The temperature dependence of the mechanical properties was investigated with shear experiments. The direct‐current conductivity increased with x and reached about 10?5 S/cm at ambient temperature. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1987–1994, 2001  相似文献   

16.
The crystallization properties of three regioregular poly(3‐alkyl thiophene)s (P3ATs) are studied: poly(3‐hexyl thiophene) (P3HT), poly(3‐octyl thiophene) (P3OT), and poly(3‐dodecyl thiophene) (P3DDT). The morphology of the isothermally crystallized samples is a whisker type. The values of the enthalpy of fusion of ideal crystals (ΔH), determined from the melting point depression in the polymer–diluent system, are 99, 73.6, and 52 J/g for P3HT, P3OT, and P3DDT, respectively. The values of the equilibrium melting point (T), determined from the Hoffman–Weeks extrapolation procedure, are 300, 230, and 180 °C for P3HT, P3OT, and P3DDT, respectively. From the linear extrapolation of the P3AT data, the T and ΔH values of unsubstituted polythiophene are predicted to be 400 °C and 139 J/g, respectively. The crystallization kinetics of these polymers are studied with differential scanning calorimetry, and the Avrami exponents vary between 0.6 and 1.4, indicating one‐dimensional heterogeneous nucleation with linear growth. As the P3AT whiskers are produced from the chain‐folding process, the Lauritzen–Hoffman growth rate theory is applied to analyze the temperature coefficient of the crystallization rate data. Graphical plots indicate a transition from regime I to regime II during isothermal crystallization for all the P3ATs studied. The fold surface energy and the work of chain folding calculated from the slopes of the graphical plots decrease with an increase in the number of carbon atoms of the side chain. The primary crystallization process of the side‐chain crystallization is very fast and is attributed to the zipping effect of the main‐chain crystals. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2073–2085, 2002  相似文献   

17.
Ethylene/l‐octene copolymers produced with metallocene catalysts are believed to have a homogeneous comonomer content with respect to molecular weight. Two series of copolymers of different molecular weights with a 1‐octene content ranging from 0 to 39 branches per 1000 carbon atoms were studied. The influence of branch content on structure and melting behavior as well as on isothermal and nonisothermal bulk crystallization was studied. In this article, the equilibrium melting temperatures of ethylene/l‐octene random copolymers is the focus. The principal techniques used were thermal analysis and small‐angle X‐ray scattering. The use of Hoffman–Weeks plots to obtain the equilibrium melting temperatures of ethylene/l‐octene random copolymers resulted in nonsensical high values of the equilibrium melting point or showed behavior parallel to the Tm = Tc line, resulting in no intercept and, hence, an infinite equilibrium melting point. The equilibrium melting temperatures of linear polyethylenes and homogeneous ethylene/l‐octene random copolymers were determined as a function of molecular weight and branch content via Thompson–Gibbs plots involving lamellar thickness data obtained from small‐angle X‐ray scattering. This systematic study made possible the evaluation of two equilibrium melting temperature depression equations for olefin‐type random copolymers, the Flory equation and the Sanchez–Eby equation, as a function of defect content and molecular weight. The range over which the two equations could be applied depended on the defect content after correction for the effect of molecular weight on the equilibrium melting temperature. The equilibrium melting temperature, T(n, pB), of the ethylene/l‐octene random copolymers was a function of the molecular weight and defect content for low defect contents (pB ≤ 1.0%). T(n, pB) was a weak function of molecular weight and a strong function of the defect content at a high defect content (pB ≥ 1.0%). The Flory copolymer equation could predict T(n, pB) at pB ≤ 1.0% when corrections for the effect of molecular weight were made. The Sanchez–Eby uniform inclusion model could predict T(n, pB) at a high defect content (1.6% ≤ pB ≤ 2.0%). We conclude that some defects were included in the crystalline phase and that the excess free energies (18–37 kJ/mol) estimated in this study were within the theoretical range. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 154–170, 2000  相似文献   

18.
The origin of double melting behavior of poly(p‐phenylene succinate) (PPSc) was investigated by differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction. As‐polymerized PPSc showed two melting peaks: the low melting (LM) and high melting (HM) peaks at 286 and 311 °C, respectively. When PPSc was annealed at 270 °C, the LM peak constantly shifted toward higher temperatures and grew in its area with annealing time, and eventually merged into the HM peak located at 308 °C. X‐ray diffractograms of PPSc annealed at 270 °C became sharper with increasing the annealing time while the peak positions did not change. The X‐ray diffractograms obtained from the LM and the HM peak exhibited the same diffraction peaks. It was concluded from these results that the double melting behavior of PPSc is due to the distribution of crystals having the same crystal form but differing in size and perfection. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1868–1871, 2000  相似文献   

19.
A series of selectively sulfonated poly(arylene ether sulfone)‐b‐polybutadiene copolymers (SPAES‐b‐PB) were prepared based on carboxyl terminated polybutadiene (CTPB) and sulfonated poly(arylene ether sulfone) (SPAES) that was directly prepared by polycondensation of 4,4′‐isopropylidenediphenol with different molar ratios of disodium 3,3′‐disulfonate‐4,4′‐dichlorodiphenyl sulfone (SDCDPS) to 4,4′‐dichlorodiphenylsulfone (DCDPS), and subsequent selective postsulfonation of flexible PB block was carried out. Epoxidized modification of membranes was conducted by an in situ‐generated peracid method. The content of sulfonic acid groups attaching to aromatic rings in SPAES was determined by 1H NMR and was in good aggrement with the controlled ratios. The effect of sulfonated rigid blocks on the postsulfonation of PB blocks was studied by Fourier transform infrared spectroscopy. The glass transition temperature (Tg) and the temperature of the melting peak (T) of membranes in acid form were studied by differential scanning calorimetry. Fenton's reagent test revealed that the selectively sulfonated SPAES‐b‐PB membranes had good stability to oxidation. The microstructure of rod‐like rigid SPAES blocks and interpenetrating network of ions were observed by transmission electron microscopy. Complex impedance measurement showed that an epoxidized membrane with SPAES‐40 exhibited the highest proton conductivity (1.08 × 10?1 S/cm, 90 °C), which was due to the formation of obvious ionic networks. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 665–672, 2006  相似文献   

20.
The phase structure of crystalline isotactic polystyrene (iPS) has been investigated with temperature‐modulated differential scanning calorimetry (TMDSC), wide‐angle X‐ray scattering (WAXS), and Fourier transform infrared (FTIR) spectroscopy. Quenched amorphous samples have been cold‐crystallized at 140 or 170 °C for various crystallization times. The degree of crystallinity obtained from WAXS, with the ratio of the crystal peak intensity to the total peak intensity, shows excellent agreement with the crystallinity determined from TMDSC total heat flow endotherms. For the first time, FTIR results show that the absorbance peak ratio (I/I) has a linear correlation with the crystalline mass fraction (χc) for cold‐crystallized iPS according to the following relation: I/I = 0.54χc + 0.16. This relationship allows the crystallinity of iPS to be determined from infrared spectroscopy analyses in cases in which it is difficult to perform thermal or X‐ray measurements. On the basis of the measurements of the heat capacity increment at the glass transition, we find that a significant amount of the rigid amorphous fraction (RAF) coexists with the crystalline and mobile amorphous phases in cold‐crystallized iPS. The RAF increases systematically with the crystallization time, and a greater amount is formed at a lower crystallization temperature. A three‐phase model (crystalline phase, mobile amorphous phase, and rigid amorphous phase) is, therefore, appropriate for the interpretation of the structure of cold‐crystallized iPS. The origin of the low‐temperature endothermic peak (annealing peak) has been investigated with TMDSC and FTIR spectroscopy and has been shown to be due to irreversible relaxation of the RAF. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3026–3036, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号