首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Coumarin, 7-hydroxycoumarin and dicoumarol molecularly imprinted polymers (MIP) were synthesized by bulk polymerization. Methacrylic acid and 4-vinylpyridine were tested as functional monomers and methanol, ethanol, acetonitrile, toluene and chloroform were tested as porogens. The binding capabilities of the imprinted polymers were assessed by equilibrium binding analysis. Highest binding capacity was obtained for MIP prepared for the template 7-hydroxycoumarin synthesized in methacrylic acid as functional monomer, chloroform as porogen and methanol/water as analyte solvent. Scanning electron microscopy analysis documented its appropriate morphology. ATR-FTIR spectra confirmed successful polymerization of MIP. Coumarin structural analogues were employed to evaluate the polymer selectivity and it was found that polymer prepared for 7-hydroxycoumarin was selective for its template molecule. Kinetic studies showed relatively fast adsorption of analytes to MIPs (1 h). Rebinding properties of MIPs were evaluated by adsorption isotherms. The calculated data fitted well with experimental data showing that Freundlich isotherm is suitable for modelling the adsorption of tested coumarins on prepared MIPs. Applicability of polymer prepared for 7-hydroxycoumarin was tested for the selective extraction of coumarins from the sample of chicory.  相似文献   

2.
In this study, new molecularly imprinted polymer (MIP) nanoparticles are designed for selective recognition of different drugs used for the treatment of type 2 diabetes mellitus, i.e. sitagliptin (SG) and metformin (MF). The SG‐ and MF‐imprinted polymer nanoparticles are synthesized by free‐radical initiated polymerization of the functional monomers: methacrylic acid and methyl methacrylate; and the crosslinker: ethylene glycol dimethacrylate. The surface morphology of resultant MIP nanoparticles is studied by atomic force microscopy. Fourier transform infrared spectra of MIP nanoparticles suggest the presence of reversible, non‐covalent interactions between the template and the polymer. The effect of pH on the rebinding of antidiabetic drugs with SG‐ and MF‐imprinted polymers is investigated to determine the optimal experimental conditions. The molecular recognition characteristics of SG‐ and MF‐imprinted polymers for the respective drug targets are determined at low concentrations of SG (50–150 ppm) and MF (5–100 ppm). In both cases, the MIP nanoparticles exhibit higher binding response compared to non‐imprinted polymers. Furthermore, the MIPs demonstrate high selectivity with four fold higher responses toward imprinted drugs targets, respectively. Recycled MIP nanoparticles retain 90% of their drug‐binding efficiency, which makes them suitable for successive analyses with significantly preserved recognition features.  相似文献   

3.
An efficient novel method for the synthesis of a covalent molecularly imprinted polymer (MIP) highly specific to β‐estradiol have been developed. MIP prepared by both covalent and non covalent techniques, demonstrated high selectivity toward β‐estradiol. MIPs were synthesized by radical polymerization of 17‐β‐estradiol 4‐vinyl‐benzene carboxyl or sulfonyl esters used as covalent functional monomers, methacrylic acid as noncovalent functional monomer, ethylene glycol dimethacrylate as crosslinking agent, and acetonitrile as swelling and porogenic component. Almost 35% (w/w) of 17‐β‐estradiol was successfully removed from the polymer network by basic hydrolysis. The binding ability of MIP was 10.73 μg/mg MIP following removal of 17‐β‐estradiol in the 2 mg/mL β‐estradiol solution. Selective rebinding of β‐estradiol toward MIP was tested in the presence of competitive binders including estrone, 19‐nortestosterone, epiandrosterone, and cholesterol. Estrone having closest similar chemical structure to β‐estradiol exhibited only 0.6 μg/mg MIP competitive binding, being exposed to equivalent concentrations. Moreover, other competitive steroids demonstrated negligible affinity toward MIP indicating high selectivity of novel MIP system toward β‐estradiol. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5534–5542, 2009  相似文献   

4.
A novel lysozyme imprinted polymer based on uniformly sized functionalized poly(glycidyl methacrylate) microspheres has been synthesized in aqueous solution using the surface imprinting technique. The microspheres were modified with hydroxyl ethyl methacrylate to allow for the introduction of polymerizable double bonds, with β‐cyclodextrin and acrylamide being grafted onto the surface as functional monomers. The selective recognition properties of the resulting molecularly imprinted polymers (MIPs) were investigated by HPLC. Various factors were also investigated in terms of their influence on the retention behaviors of the imprinted polymers, including the pH and salt concentration of the mobile phase. The binding capability properties of the MIPs were evaluated, and the PGMA/EDMA‐MIPs showed a high adsorption capacity for lysozyme. Furthermore, this MIP was used to separate and enrich lysozyme from egg whites. The results revealed that the lysozyme surface‐modified MIP could be used to efficiently separate and purify lysozyme from egg whites. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The displacement of non-specific dyes from molecularly imprinted polymer (MIP) chromatographic stationary phases has been used for the detection and quantification of ligand-polymer binding events. A blank polymer and an L-phenylalaninamide-imprinted polymer were prepared using methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as a crosslinker. The MIP is first loaded with dye, and a solution of the dye in the eluent is passed through the MIP. If analyte is injected into the dye solution in the eluent, part of the dye is competitively replaced by the analyte from the MIP. Specifically, the competitive displacement of rhodamine B by amino acids and phenylalaninamide (Phe-NH2), respectively, has been studied under polar and hydrophobic elution conditions. Enantioselective binding of Phe and Phe-NH2 to the imprinted polymer was shown to occur in the micromolar concentration range. It is proposed that the displacement of non-specific dyes from MIPs be used for the development of multisensors based upon these highly specific and stable materials, which provide promising alternatives to the use of biological macromolecules in sensor technology. Received: 24 November 1998 / Revised: 29 January 1999 / Accepted: 2 February 1999  相似文献   

6.
The displacement of non-specific dyes from molecularly imprinted polymer (MIP) chromatographic stationary phases has been used for the detection and quantification of ligand-polymer binding events. A blank polymer and an L-phenylalaninamide-imprinted polymer were prepared using methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as a crosslinker. The MIP is first loaded with dye, and a solution of the dye in the eluent is passed through the MIP. If analyte is injected into the dye solution in the eluent, part of the dye is competitively replaced by the analyte from the MIP. Specifically, the competitive displacement of rhodamine B by amino acids and phenylalaninamide (Phe-NH2), respectively, has been studied under polar and hydrophobic elution conditions. Enantioselective binding of Phe and Phe-NH2 to the imprinted polymer was shown to occur in the micromolar concentration range. It is proposed that the displacement of non-specific dyes from MIPs be used for the development of multisensors based upon these highly specific and stable materials, which provide promising alternatives to the use of biological macromolecules in sensor technology. Received: 24 November 1998 / Revised: 29 January 1999 / Accepted: 2 February 1999  相似文献   

7.
Molecular dynamics simulations combined with spectroscopic analysis were applied to understand the nature of recognition in molecularly imprinted polymers (MIPs), and for optimizing the MIP formulation. The best monomers for synthesizing imprinted materials for 17β-estradiol (BE2) were selected by evaluating the strength of the template–monomer interaction derived from molecular dynamics simulations. A number of potential functional monomers for BE2 were screened for hydrogen-bonding strength in order to analyze template–monomer interactions favorable for synthesizing noncovalent MIPs, with the simulations revealing that methacrylic acid, 2-(diethylamino)ethyl methacrylate, and methacrylamide provided the highest binding affinity to BE2. These theoretical predictions agree with previously reported results on batch rebinding studies using the corresponding functional monomers for synthesizing a series of MIPs. Molecular analysis such as 1H NMR was used for experimentally confirming the prevalent template–monomer interactions derived from the modeling results. Molecular dynamics simulations indicating monomer dimerization in the prepolymerization solution correlated with the nature of the porogenic solvent, which was confirmed by NMR studies on hydrogen-bonding interactions of methacrylic acid in different solvents. Furthermore, batch rebinding studies revealed that the specific functionalities of the monomers essential to rebinding are retained after polymerization, which proves that the application of computational methods for modeling the prepolymerization solution provides useful information for optimizing real MIP systems.  相似文献   

8.
An enzyme‐mediated synthetic approach is described for the preparation of molecularly imprinted polymer nanoparticles (MIP‐NPs) in aqueous media. Horseradish peroxidase (HRP) was used to initiate the polymerization of methacrylate or vinyl monomers and cross‐linkers by catalyzing the generation of free radicals. To prevent entrapment of the enzyme in the cross‐linked polymer, and to enable it to be reused, HRP was immobilized on a solid support. MIPs based on 4‐vinylpyridine and 1,4‐bis(acryloyl)piperazine for the recognition of 2,4‐dichlorophenoxyacetic acid (2,4‐D) and salicylic acid were synthesized in an aqueous medium. MIPs for the protein trypsin were also synthesized. MIP nanoparticles with sizes between 50 and 300 nm were obtained with good binding properties, a good imprinting effect, and high selectivity for the target molecule. The reusability of immobilized HRP for MIP synthesis was shown for several batches.  相似文献   

9.
Ibuprofen and ketoprofen are chemically similar non‐steroidal anti‐inflammatory drugs widely used in the treatment of arthritis. Using a molecular imprinting technique, a simple and rapid method was developed for the simultaneous separation and determination of ibuprofen and ketoprofen. Molecular imprinting introduces artificial binding sites into a synthetic polymer matrix, allowing it to exhibit selective rebinding of template molecules. Imprinted polymers can be regarded as an HPLC stationary phase, important for pharmaceutical analysis. Most molecularly imprinted polymers (MIPs) are synthesized by free radical polymerization of functional monomers, resulting in an excess of crosslinking monomers. In this study, MIPs have been prepared with a ibuprofen template, which can form intramolecular hydrogen bonds. Methacrylic acid (MAA) and ethyleneglycol dimethacrylate (EGDMA) were used as the functional monomer and cross‐linker, respectively. Bulk polymerization was carried out at 4 °C under UV radiation. The resulting MIP was ground into 25?44 μm particles, which were slurry‐packed into analytical columns. Template molecules were removed by methanol‐acetic acid (9:1, v/v). We evaluated the template binding performance of the MIP using HPLC, with ultraviolet (UV) detection at 234 nm. Chromatographic resolution of ibuprofen and ketoprofen on the MIPs were appraised using buffer/acetonitrile (45/55, v/v) as the mobile phase. Results show that the MIPs prepared using ibuprofen as the template had a significant molecular imprinting effect. The method was successfully applied to the separation and analysis of ibuprofen and ketoprofen in pharmaceuticals.  相似文献   

10.
Shabi Abbas Zaidi 《Electrophoresis》2013,34(9-10):1375-1382
To extend the application of molecularly imprinted polymers, the dual‐templates molecularly imprinted monolithic columns were developed in a capillary format. Two templates serotonin and histamine were simultaneously imprinted using two different functional monomers such as methacrylic acid (MAA) and methylenesuccinic acid (MSA) in a mixture of ethylene glycol dimethacrylate (EDMA) as a cross‐linker and AIBN as polymerization initiator dissolved in DMF as porogen. The resulting molecular imprinted polymers (MIPs) were characterized based on their performance in the CEC separation of two imprinted templates. The optimization parameters such as pH, ACN composition, and concentration of the eluent were varied to achieve best resolution and efficiency for CEC separation of templates with each MIP column. It was found that the MIP monolith column fabricated using MSA offered better resolution and separation efficiency compared to column fabricated with MAA. This work utilized the dual‐templates imprinting approach successfully and broadens the scope of multi‐templates imprinting capabilities in capillary format in CEC application.  相似文献   

11.
Molecularly imprinted polymer (MIP) was synthesized and applied for the extraction of chicoric acid from Chicory herb (Chicorium intybus L.). A computational study was developed to find a suitable template to functional monomer molar ratio for MIP preparations. The molar ratio was chosen based on the comparison of the binding energy of the complexes between the template and functional monomers. Based on the computational results, eight different polymers were prepared using chicoric acid as the template. The MIPs were synthesized in a non-covalent approach via thermal free-radical polymerization, using two different polymerization methods, bulk and suspension. Batch rebinding experiments were performed to evaluate the binding properties of the imprinted polymers. The best results were obtained with a MIP prepared using bulk polymerization with 4-vinylpyridine (4-VP) as the functional monomer and ethylene glycol dimethacrylate (EGDMA) as the crosslinker with a molar ratio of 1:4:20. The best MIP showed selective binding ability toward chicoric acid in the presence of the template’s structural analogues, caffeic acid, caftaric acid and chlorogenic acid.  相似文献   

12.
A method for synthesis and evaluation of molecularly imprinted polymers (MIPs) on a semiautomated miniature scale is reported. This technique combines molecular imprinting with the combinatorial chemistry approach, allowing rapid screening and optimizations of libraries of MIPs. The polymers were prepared and evaluated in situ by rebinding utilizing powder dispensing and liquid handling systems. MIPs were prepared by a combinatorial approach using methacrylic acid (MAA), 4-vinylpyridine (4-VP), acrylamide, and styrene as functional monomers, and acetonitrile and toluene as porogenic solvents. A drug substance having aromatic, hydroxyl, -O-CONH2 functional groups was selected as the template molecule for this study. The MIP library results demonstrated that the polymer prepared with MAA as functional monomer shows the strongest binding affinity, and therefore, is preferred for the preparation of this particular template molecule. Due to the low consumption of reagents, and more importantly, the demonstrated ability of this method to effectively identify optimal imprinting conditions, this small-scale combinatorial protocol is well suited for fast and efficient screening and optimizations of MIPs.  相似文献   

13.
A series of molecularly imprinted polymer (MIP) synthetic receptors selective for the sedative thalidomide (5) have been designed and synthesized based upon the functional monomer 9-(2'-methacryloyloxyethyl)adenine (2). (1)H-NMR studies were used to establish the existence of DNA-like binding interactions between 2 and the template (5). A series of ethylene glycol dimethacrylate cross-linked copolymers was synthesized using either 2 or methacrylic acid, or a combination of these functional monomers. Zonal HPLC studies demonstrated enantioselectivity (alpha = 2.11) and ligand selectivity which could be attributed to the interaction of 2 with the imide moiety of 5. Compound 2 provided a more significant contribution to the binding of 5 than methacrylic acid, though a combination of these two functional monomers resulted in improved enantioselectivity. Frontal chromatographic and batch binding studies confirmed the observed differences in affinity of the imprinted and reference polymers for the template.  相似文献   

14.
Cholesterol-imprinted polymers were prepared in bulk polymerization by the methods of covalent and non-covalent imprinting. The former involved the use of a template-containing monomer, cholesteryl (4-vinyl)phenyl carbonate, while the latter used the complexes of template and functional monomer, methacrylic acid or 4-vinylpyridine prior to polymerization. Columns packed with these molecularly imprinted polymers (MIPs) were all able to separate cholesterol from other steroids. For different combinations of cholesterol and beta-estradiol concentrations in a total of 1 g/l, the peak retention times for both compounds were nearly constant. The adsorption capacity for cholesterol onto the MIPs was found to significantly depend on the use of functional monomers, but the selectivity factors were only slightly different from each other at 2.9 to 3.2 since the separation was all based on the specific binding of cholesterol to recognition sites formed on the imprinted polymers. The capacity factors for cholesterol were determined to be 3.5, 4.0 and 3.1, respectively, for covalently imprinted, 4-vinylpyridine-based, and methacrylic acid-based non-covalently imprinted polymers. However, the covalently imprinted polymer was found to have a higher adsorption capacity for cholesterol and about fivefold higher chromatographic efficiency for cholesterol separation, in comparison with non-covalently imprinted polymers. The use of covalent imprinting significantly reduced the peak broadening and tailing. This advantage along with constant retention suggests that the covalently imprinted polymer has potential for quantitative analysis.  相似文献   

15.
Cobb Z  Sellergren B  Andersson LI 《The Analyst》2007,132(12):1262-1271
Two novel molecularly imprinted polymers (MIPs) selected from a combinatorial library of bupivacaine imprinted polymers were used for selective on-line solid-phase extraction of bupivacaine and ropivacaine from human plasma. The MIPs were prepared using methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linking monomer and in addition hydroxyethylmethacrylate to render the polymer surface hydrophilic. The novel MIPs showed high selectivity for the analytes and required fewer and lower concentrations of additives to suppress non-specific adsorption compared with a conventional MIP. This enabled the development of an on-line system for direct extraction of buffered plasma. Selective extraction was achieved without the use of time-consuming solvent switch steps, and transfer of the analytes from the MIP column to the analytical column was carried out under aqueous conditions fully compatible with reversed-phase LC gradient separation of analyte and internal standard. The MIPs showed excellent aqueous compatibility and yielded extractions with acceptable recovery and high selectivity.  相似文献   

16.
《先进技术聚合物》2018,29(5):1360-1371
In this study, a series of imprinted poly(methacrylic acid‐co‐ethylene glycol dimethacrylate) nanocarriers for diclofenac and corresponding nonimprinted polymer nanocarriers have been synthesized in 4 different types of solvents by precipitation polymerization. The products were characterized by Fourier transform infrared, scanning electron microscopy, dynamic light scattering, and Brunauer‐Emmett‐Teller measurement. Results showed that uniformly sized molecularly imprinted polymer (MIP) nanospheres with relatively good porosity could only be obtained in acetonitrile. The effects of solvents on the recognition and release properties of polymer particles were also carefully investigated. The binding experiments indicated that MIPs prepared in acetonitrile displayed much higher binding capacity than other MIPs with a maximum binding capacity of 65.18 mg g−1. The Scatchard analysis showed that synthetic MIPs have special recognition sites for diclofenac, while nonimprinted polymers have not. The Sips model could provide a best fit to the equilibrium data of nanocarriers over whole concentrations. The experimental data of an adsorption kinetic study were well fitted to the pseudo–second‐order kinetic model, indicating the chemisorption mechanism between diclofenac and MIPs in the process of adsorption. The drug release of diclofenac from MIPs could well be described by the Ritger‐Peppas model, suggesting a non‐Fickian diffusion mechanism. In addition, we successfully used MIPs to extract diclofenac at low levels from fetal bovine serum.  相似文献   

17.
A facile, general, and highly efficient one‐pot approach to obtain azobenzene (azo)‐containing molecularly imprinted polymer (MIP) nanoparticles with photoresponsive template binding and release properties in aqueous media is described, which involves the combined use of hydrophilic macromolecular chain transfer agent‐mediated reversible addition‐fragmentation chain transfer precipitation polymerization and easily available water‐insoluble azo functional monomers. The resulting azo‐containing MIPs were characterized with dynamic laser scattering (DLS), SEM, FTIR, static contact angle and water dispersion studies, and equilibrium binding experiments. They have proven to be nanoparticles (their diameters being around 104–397 nm, as determined by DLS in methanol) with surface‐grafted hydrophilic polymer brushes and exhibit excellent pure water‐compatible template binding properties. Moreover, obvious photoregulated template binding behaviors were observed for such azo‐containing MIP nanoparticles, which led to their largely accelerated template release in the aqueous media under the UV light irradiation. Furthermore, the general applicability of the strategy was also demonstrated. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1941–1952  相似文献   

18.
Three different molecularly imprinted polymers (MIPs) have been prepared by precipitation polymerisation using linuron (LIN) or isoproturon (IPN) (phenylurea herbicides) as templates and methacrylic acid (MAA) or trifluormethacrylic acid (TFMAA) as functional monomers. The ability of the different polymers to selectively rebind not only the template but also other phenylurea herbicides has been evaluated. In parallel, the influence of the different templates and functional monomers used during polymers synthesis on the performance of the obtained MIPs was also studied through different rebinding experiments. The experimental binding isotherms were fitted to the Langmuir-Freundlich isotherm allowing to describe the kind of binding sites present in the imprinted polymers under study. It was concluded that TFMAA-based polymer using IPN as template presents the best properties to be used as a selective sorbent for the extraction of phenylurea herbicides.  相似文献   

19.
Polymeric sorbents targeting endocrine‐disrupting estrogen active compounds (EAC) were prepared by terpolymer imprinting using 17β‐estradiol (E2) as template. From a group of eight functional monomers representing Brønsted acids, bases, hydrogen‐bond donors and acceptors, as well as π‐interacting monomers, a terpolymer library that comprises all possible binary combinations of the functional monomers was prepared. Binding tests revealed that imprinted polymers exhibit a markedly higher affinity for E2 compared to nonimprinted polymers (NIPs) or polymers prepared by using single functional monomers. A combination of methacrylic acid (MAA) and p‐vinylbenzoic acid offered a particularly promising lead polymer, displaying an imprinting factor of 17 versus 2.4 for a benchmark polymer prepared by using only MAA as functional monomer. The saturation capacities ascribed to imprinted sites were four to five times higher for this polymer compared to previously reported imprinted polymers. NMR titrations and molecular dynamics simulations corroborated these results, indicating an orthogonal preference of the two functional monomers with respect to the E2 3‐OH and 17‐OH groups. The optimized polymer exhibited a retentivity for EACs that correlates with their inhibitory effect on the natural receptor. By using the optimized molecularly imprinted polymers (MIPs) in a model water‐purification system, they were capable of completely removing ppb levels of a small group of EACs from water. This is in contrast to the performance of nonimprinted polymers and well‐established sorbents for water purification (e.g., active carbon), which still contained detectable amounts of the compounds after treatment.  相似文献   

20.
A specific adsorbent for extraction of methidathion from olive oil was developed. The design of the molecularly imprinted polymer (MIP) was based on the results of the computational screening of the library of polymerisable functional monomers. MIP was prepared by thermal polymerisation using N,N’-methylene bisacrylamide (MBAA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as a cross-linker. The polymers based on the itaconic acid (IA), methacrylic acid (MAA) and 2-(trifluoromethyl)acryl acid (TFMAA) functional monomers and one control polymer which was made without functional monomers with cross-linker EGDMA were also synthesised and tested. The performance of each polymer was compared using corresponding imprinting factor. As it was predicted by molecular modelling the best results were obtained for the MIP prepared with MBAA. The obtained MIP was optimised in solid-phase extraction coupled with high performance liquid chromatography (MISPE-HPLC-UV) and tested for the rapid screening of methidathion in olive oil. The proposed method allowed the efficient extraction of methidathion for concentrations ranging from 0.1 to 9 mg L−1 (r2 = 0.996). The limits of detection (LOD) and quantification (LOQ) in olive oil were 0.02 mg L−1 and 0.1 mg L−1, respectively. MIPs extraction was much more effective than traditional C18 reverse-phase solid phase extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号