首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorus‐containing epoxy‐based epoxy–silica hybrid materials with a nanostructure were obtained from bis(3‐glycidyloxy)phenylphosphine oxide, diaminodiphenylmethane, and tetraethoxysilane in the presence of the catalyst p‐toluenesulfonic acid via an in situ sol–gel process. The silica formed on a nanometer scale in the epoxy resin was characterized with Fourier transform infrared, NMR, and scanning electron microscopy. The glass‐transition temperatures of the hybrid epoxy resins increased with the silica content. The nanometer‐scale silica showed an enhancement effect of improving the flame‐retardant properties of the epoxy resins. The phosphorus–silica synergistic effect on the limited oxygen index (LOI) enhancement was also observed with a high LOI value of 44.5. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 986–996, 2001  相似文献   

2.
In this paper, we prepared the light emitting diode (LED) encapsulant with self‐adhesion and high refractive index. In order to improve adhesion properties, we synthesized a series of multifunctional polysiloxanes with different contents of epoxy groups via the sol–gel condensation of methylvinyldimethoxysilane, diphenylsilanediol and 3‐glycidoxypropyldimethoxymethylsilane. The structures of epoxyphenylvinyl silicone (EPVS) resins were confirmed by proton nuclear magnetic resonance and Fourier‐transform infrared. The effect of epoxy group content on the adhesion property of EPVS resins was fully studied. The performances of the LED encapsulation materials based on EPVS resins were investigated in detail. These self‐adhesive encapsulating materials showed excellent thermal stability, a high refractive index of 1.55 and good adhesive property. These EPVSs can be used as an adhesion promoter for LED encapsulation materials. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
In this study, polyimide–silica (PI–silica) based hybrid coating compositions were prepared from tetraethoxysilane (TEOS), γ‐glycidyloxypropyl trimethoxy silane (GOTMS), and polyamic acid (PAA) via a combination of sol–gel and thermal imidization techniques. PAA was synthesized from 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) and 3,3'‐Diaminodiphenyl sulfone (DDS) in N‐Methyl‐2‐pyrrolidone (NMP). The silica content in the hybrid coatings was varied from 0 to 20 wt%. The structural characterization of the hybrid coatings was performed using FTIR and 29Si‐NMR spectroscopies. Results from both pendulum hardness and micro indentation test show that the hardness of hybrid coatings improves with the increase in silica content. The tensile tests also demonstrated that the mechanical properties at low silica content are rather striking. Their surface morphologies were characterized by scanning electron microscopy (SEM). SEM studies revealed that inorganic particles were distributed homogenously through the PI matrix. It was also found that, incorporation of the silica domains increased the thermal stability of the hybrid coatings. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Various ladder‐like structured poly(phenyl‐co‐methacryl silsesquioxane)s (LPMSQ)s with high molecular weight (Mw = 10,000 ~ 40,000) were synthesized by direct hydrolysis and polymerization in the presence of base catalyst at 25 °C. Synthesized LPMSQs mainly showed ladder‐like structure and photo‐cure reaction by 100 mW/cm2 (360 nm) for 10 s without any photo‐cure initiators. Chemical composition and structural analysis of the obtained LPMSQs were characterized using 1H NMR, 29Si NMR, Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), and X‐ray diffraction (XRD). Physical properties of LPMSQs before and after photcuring were analyzed by Nanoindentation. Surface modulus increased to 8GPa and hardness of thin films increased from 100 to 400 MPa. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
Supported nickel has been used in a wide range of applications for industrial reactions, such as steam reforming, hydrogenation and methanation. In this work, nickel aluminate was prepared by the sol–gel process using alumatrane as the alkoxide precursor, directly synthesized from the reaction of inexpensive and available compounds, aluminum hydroxide and TIS (triisopropanolamine) via the oxide one pot synthesis (OOPS) process. Various conditions of the sol–gel process, such as pH, calcination temperature, hydrolysis ratio and ratio of nickel to aluminum, were studied. All samples were characterized using FTIR, TGA, XRD, TPR, DR‐UV and BET. The BET surface area was in the range of 340–450 m2/g at the calcination temperature of 500 °C with a mesoporous pore size distribution. Catalyst activity testing in CO oxidation reaction depended on Ni:Al ratio and calcination temperature. Higher activity was obtained from higher Ni content and lower calcination temperature. In addition, catalysts prepared using alumatrane precursor had higher percentage conversion than those prepared using aluminum hydroxide precursor. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Nanocomposite materials prepared from radically photocurable hybrid sol–gel precursors have been widely developed within the last decade, especially to devise novel optical devices and coatings. For their synthesis, a preferential route has involved in the successive sol–gel process of acrylate trialkoxysilane precursors followed by radical photopolymerization. In contrast, this work presents an original one‐step synthesis based on the association of two different photoinitiators (PIs) in the same formulation: the photolysis of a hydroxyphenylketone (radical PI) affords polyacrylate chains while that of a diaryl iodonium salt (cationic PI) generates powerful superacids catalyzing the sol–gel reactions of the alkoxy functions. The behavior of methacrylate and acrylate trimethoxysilane precursors was compared to highlight the effect of the organic moiety functionality on the reaction kinetics (Fourier transform infrared spectroscopy) and the film microstructure (13C and 29Si solid‐state nuclear magnetic resonance). Interestingly, evidence of local organization in these hybrid films was also given by X‐ray analysis. In a last part, their thermomechanical properties were discussed thoroughly using a range of techniques: DSC, scratch‐resistance test, nanoindentation. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4150–4158, 2010  相似文献   

7.
8.
9.
《先进技术聚合物》2018,29(6):1852-1860
A novel kind of biobased monomer, epoxidized cardanol‐based acrylate (ECA), was successfully synthesized from cardanol via acrylation and epoxidization. The chemical structure was confirmed by Fourier transform infrared spectroscopy and proton nuclear magnetic resonance. Then, the ECA was employed to produce UV‐curable films and coatings copolymerized with castor oil‐based polyurethane acrylate. Compared to coatings from petroleum‐based diluent hydroxyethyl acrylate‐based castor oil‐based polyurethane acrylate resins, ECA‐based biomaterials exhibited a little inferior dilution ability but overcome the drawback of high volumetric shrinkage with a special lower value. Moreover, ultimate properties of the UV‐cured biomaterials such as thermal, mechanical, coating, swelling, and hydrophobic properties were investigated. The UV‐curing behavior was investigated using real‐time IR, and the overall double bond conversion was more than 90%. This biobased UV‐curable cardanol‐based diluent shows a promise in “green + green” materials technologies.  相似文献   

10.
Despite considerable achievements over the last two decades, nonporous organic–inorganic hybrid materials are mostly amorphous, especially in the absence of solvothermal processes. The organosilane self‐assembly approach is one of the few opportunities for creating a regular assembly of organic and inorganic moieties. Additionally, well‐established organosilicon chemistry enables the introduction of numerous organic functionalities. The synthesis of periodically ordered hybrids relies on mono‐, bis‐, or multisilylated organosilane building blocks self‐assembling into hybrid mesostructures or superstructures, subsequently cross‐linked by siloxane Si‐O‐Si condensation. The general synthesis procedure is template‐free and one‐step. However, three concurrent processes underlie the generation of self‐organized hybrid networks: thermodynamics of amphiphilic aggregation, dynamic self‐assembly, and kinetically controlled sol–gel chemistry. Hence, the set of experimental conditions and the precursor structure are of paramount importance in achieving long‐range order. Since the first developments in the mid‐1990s, the subject has seen considerable progress leading to many innovative advanced nanomaterials providing promising applications in membranes, pollutant remediation, catalysis, conductive coatings, and optoelectronics. This work reviews, comprehensively, the primary evolution of this expanding field of research.  相似文献   

11.
Sol–gel glass matrices in which organic laser dyes are embedded can be used as the gain medium in solid‐state, continuously tunable lasers. Such lasers are very simple to construct, and potentially very compact and efficient. Unlike the commonly used liquid dye laser systems, solid‐state dye lasers can be made mechanically robust and portable. In this article, the development of sol–gel/dye lasers, including the sol–gel technology, dye properties, and laser operation, is reviewed. In addition, new solid‐state hosts (such as polyurethane/silica ORMOSILs), additional organic dyes (cyanines), and new studies on the stability of the dyes are presented. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Several kinds of organic–inorganic hybrids were synthesized from an epoxy resin and a silane alkoxide with a primary amine‐type curing agent or tertiary amine curing catalyst. In the hybrid systems cured with the primary amine‐type curing agent, the storage modulus in the high‐temperature region increased, and the peak area of the tan δ curve decreased. Moreover, the mechanical properties were improved by the hybridization of small amounts of the silica network. However, these phenomena were not observed in the hybrid systems cured with the tertiary amine catalyst. The differences in the network structures of the hybrid materials with the different curing processes were characterized with Fourier transform infrared (FTIR). In the hybrid systems cured with the primary amine‐type curing agent, FTIR results showed the formation of a covalent bond between silanol and hydroxyl groups that were generated by the reaction of an epoxy group with an active hydrogen of the primary amine. However, this phenomenon was not observed in the hybrids cured with the tertiary amine. The hybrids with the primary amine showed a homogeneous microstructure in transmission electron microscopy observations, although the hybrids cured with the tertiary amine showed a heterogeneous structure. These results mean that the differences in the interactions between the organic and inorganic phases significantly affect the properties and microstructures of the resultant composites. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1071–1084, 2001  相似文献   

13.
In this study, a series of ultraviolet (UV)‐curable organic–inorganic hybrid coating materials containing phosphorus were prepared by sol–gel approach from acrylate end‐capped urethane resin, acrylated phenyl phosphine oxide oligomer (APPO), and inorganic precursors. TEOS and MAPTMS were used to obtain the silica network and Ti:acac complex was employed for the formation of the titania network in the hybrid coating systems. Coating performance of the hybrid coating materials applied on aluminum substrates was determined by the analysis techniques, such as hardness, gloss, impact strength, cross‐cut adhesion, taber abrasion resistance, which were accepted by international organization. Also, stress–strain test of the hybrids was carried out on the free films. These measurements showed that all the properties of the hybrids were enhanced effectively by gradual increase in sol–gel precursors and APPO oligomer content. The thermal behavior of the hybrid coatings was investigated by thermogravimetric analysis (TGA) analysis. The flame retardancy of the hybrid materials was examined by the limiting oxygen index (LOI); the LOI values of pure organic coating (BF) increased from 31 to 44 for the hybrid materials containing phosphorus (BF‐P:40/Si:10). The data from thermal analysis and LOI showed that the hybrid coating materials containing phosphorus have higher thermal stability and flame resistance properties than the organic polymer. Besides that, it was found that the double bond conversion values for the hybrid mixtures were adequate in order to form an organic matrix. The polycondensation reactions of TEOS and MAPTMS compounds were also investigated by 29Si‐NMR spectroscopy. SEM studies of the hybrid coatings showed that silica/titania particles were homogenously dispersed through the organic matrix. In addition, it was determined that the hybrid material containing phosphorus and silica showed fibrillar structure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Pure and modified silica materials were synthesised by a sol–gel process and used as carrier for the controlled release of ibuprofen, selected as model drug. A one‐step synthesis was optimised for the preparation of various silica–drug composites by using tetraethoxysilane and 3‐aminopropyltriethoxysilane as precursors at different molar ratios. The presence of aminopropyl groups on the silica surface influences the drug‐delivery rate leading to a high degree the desorption process controlled.  相似文献   

15.
A novel method for surface modification of UV‐cured epoxy network was described. Photoinitiated cationic copolymerization of a bisepoxide, namely 3,4‐epoxy cyclohexylmethyl 3,4‐epoxycyclohexanecarboxylate (EEC) with epibromohydrine (EBH) by using a cationic photoinitiator, [4‐(2‐methylpropyl)phenyl]4‐methylphenyl‐iodonium hexafluorophosphate, in propylene carbonate solution was studied. The real‐time Fourier transform infrared spectroscopic, gel content determination and thermal characterization studies revealed that both EEC and EBH monomers take part in the polymerization and epoxy network possessing bromomethyl functional groups was obtained. The bromine functions of the cured product formed on the glass surface were converted to azide functionalities with sodium azide. Independently prepared alkyne functional poly(ethylene glycol) (PEG) was subsequently anchored to azide‐modified epoxy surface by a “click” reaction. Surface modification of the network through incorporation of hydrophilic PEG chain was evidenced by contact angle measurements. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2862–2868, 2010  相似文献   

16.
Transparent poly(methyl acrylate‐co‐itaconic anhydride)/SiO2 hybrid materials were prepared from methyl acrylate‐itaconic anhydride copolymer and tetraethoxysilane (TEOS) with the coupling agent (3‐aminopropyl)triethoxysilane (APTES) via a sol–gel process. The covalent bonds between the organic and inorganic phases were introduced by the in situ aminolysis of the itaconic anhydride units with APTES forming a copolymer bearing a triethoxysilyl group. These groups subsequently were hydrolyzed with TEOS and allowed to form a network. These reactions were monitored by Fourier transform infrared analysis. The amount of APTES had a dramatic influence on the gel time and sol fraction. The effect of APTES, the inorganic content, and the nature of the catalyst on the thermal properties and morphology of the hybrid materials were studied by differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy, and atomic force microscopy. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 321–328, 2000  相似文献   

17.
Two thermoset systems based on maleimides and diglycidyl ether of bisphenol A (DGEBA) cured with p-aminobenzoic acid were characterized in terms of thermal and electrical behavior. Thermal characterization has been undertaken by means of thermogravimetric analysis in nitrogen atmosphere up to 600°C using simultaneous thermogravimetric/Fourier transform infrared/mass spectrometry (TG/FT-IR/MS) analysis. In the first stage of thermal degradation, the global kinetic parameters [activation energy (Ea) and preexponential factor (log A1 (s−1))] were calculated using the isoconversional method of Friedman. The energies variation as well as the shape of the differential thermal analysis curves suggests that the thermal decomposition process occurred in multiple stages. The evolved gases analysis was conducted by simultaneous TG/FT-IR/MS coupled techniques. Dielectric relaxation spectroscopy characterization was also made.  相似文献   

18.
Organic–inorganic hybrid core‐shell nanoparticles with diameters ranging from 100 to 1000 nm were prepared by a one‐pot synthesis based on base catalyzed sol–gel reactions using tetraethoxysilane and a triethoxysilane‐terminated polyethylene‐b‐poly(ethylene glycol) as reactants. Data from TEM, TGA, and solid‐state NMR analysis are in agreement with the formation of core‐shell nanoparticles with an inorganic‐rich core and an external shell consisting of an amphiphilic block copolymer monolayer. The influence of the organic–inorganic ratio, solution concentration, and postcuring temperature on core and shell dimensions of the nanospheres were investigated by TEM microscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1699–1709, 2008  相似文献   

19.
This contribution aims at evaluating different synthesis procedures leading to zirconia‐based aerogels. A series of undoped and yttrium‐doped zirconia aerogels have been prepared via hydrolysis and condensation reaction of different alkoxy‐ and different inorganic salt‐based precursors followed by supercritical drying. Well‐established but deleterious zirconium n‐propoxide (TPOZ) or zirconium n‐butoxide (TBOZ) were used as metal precursors in combination with acids like nitric acid and acetic acid as auxiliary agent for the generation of non‐yttrium stabilized zirconia aerogels. Yttrium‐stabilized zirconia aerogels as well as pure zirconia aerogels were obtained by the salt route starting from ZrCl4 and crosslinking agents like propylene oxide or acetylacetone. The characteristics of the products were analyzed by nitrogen adsorption measurements, electron microscopy, and X‐ray scattering. It turned out that with respect to all relevant properties of the aerogels as well as the practicability of the synthesis procedures, approaches based on inexpensive non‐toxic salt precursors are the methods of choice. The salt‐based approaches allow not only for low‐cost, easy‐to‐handle synthesis procedures with realizable gelation times of less than 60 seconds, but also delivered the products with the highest surface area (449 m2 g?1 for ZrCl4) within this series of syntheses.  相似文献   

20.
Organic–inorganic hybrid electrolytes based on PEO‐NaTFSI‐ionic liquid (HMIMTFSI)‐silica (in situ production via sol gel process) are being reported in this article. The variation in conductivity with ionic liquid (IL) addition has been explained on the basis of number of free TFSI anions evaluated using ATR‐IR data. The deconvolution of the IR spectra of these hybrid electrolytes has given evidence of ion‐pair formation which has been compared vis‐á‐vis the conductivity variation. The hybrid electrolyte with maximum conductivity comprises the highest number of free imide ions and has lowest glass transition temperature. FESEM has displayed a porous and layered surface morphology with dispersed silica nanoparticles. In addition, the optimized hybrid electrolyte has been compared with 5 wt% (limit of mechanical stability) ex situ silica added composite where the temperature cycling of conductivity has shown that the ex situ dispersed hybrid electrolytes do not retrace their conductivity path contrary to the in situ prepared hybrid electrolytes. This behavior has been explained to be due to the hindrance offered by the ex situ added silica in the recrystallization kinetics of PEO. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 207–218  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号