首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Closed-form solutions are presented for the transient hydromagnetic flow in a rotating channel with inclined applied magnetic field under the influence of a forced oscillation. Magnetic Reynolds number is large enough to permit the inclusion of magnetic induction effects. The Maxwell displacement current effect is also included and simulated via a dielectric strength parameter. The governing momentum and magnetic induction conservation equations are normalized with appropriate transformations and the resulting quartet of partial differential equations are solved exactly. A parametric study is performed of the influence of oscillation frequency parameter (ω), time (T), inverse Ekman number, i.e. rotation parameter (K 2), square of the Hartmann magnetohydrodynamic (MHD) parameter (M 2), and magnetic field inclination (θ) on the primary and secondary induced magnetic field components (b x , b y ) and velocity components (u, v) across the channel. Network solutions are also obtained to validate the exact solutions and shown to be in excellent agreement. Applications of the study arise in planetary plasma physics and rotating MHD induction power generators and also astronautical flows.  相似文献   

2.
Closed-form solutions are presented for the transient hydromagnetic flow in a rotating channel with inclined applied magnetic field under the influence of a forced oscillation. Magnetic Reynolds number is large enough to permit the inclusion of magnetic induction effects. The Maxwell displacement current effect is also included and simulated via a dielectric strength parameter. The governing momentum and magnetic induction conservation equations are normalized with appropriate transformations and the resulting quartet of partial differential equations are solved exactly. A parametric study is performed of the influence of oscillation frequency parameter (ω), time (T), inverse Ekman number, i.e. rotation parameter (K 2), square of the Hartmann magnetohydrodynamic (MHD) parameter (M 2), and magnetic field inclination (θ) on the primary and secondary induced magnetic field components (b x , b y ) and velocity components (u, v) across the channel. Network solutions are also obtained to validate the exact solutions and shown to be in excellent agreement. Applications of the study arise in planetary plasma physics and rotating MHD induction power generators and also astronautical flows.  相似文献   

3.
The group theoretic method is applied for solving problem of combined magneto-hydrodynamic heat and mass transfer of non-Darcy natural convection about an impermeable horizontal cylinder in a non-Newtonian power law fluid embedded in porous medium under coupled thermal and mass diffusion, inertia resistance, magnetic field, thermal radiation effects. The application of one-parameter groups reduces the number of independent variables by one and consequently, the system of governing partial differential equations with the boundary conditions reduces to a system of ordinary differential equations with appropriate boundary conditions. The ordinary differential equations are solved numerically for the velocity using shooting method. The effects of magnetic parameter M, Ergun number Er, power law (viscosity) index n, buoyancy ratio N, radiation parameter Rd, Prandtl number Pr and Lewis number Le on the velocity, temperature fields within the boundary layer, heat and mass transfer are presented graphically and discussed.  相似文献   

4.
Both numerical and asymptotic analyses are performed to study the similarity solutions of three‐dimensional boundary‐layer viscous stagnation point flow in the presence of a uniform magnetic field. The three‐dimensional boundary‐layer is analyzed in a non‐axisymmetric stagnation point flow, in which the flow is developed because of influence of both applied magnetic field and external mainstream flow. Two approaches for the governing equations are employed: the Keller‐box numerical simulations solving full nonlinear coupled system and a corresponding linearized system that is obtained under a far‐field behavior and in the limit of large shear‐to‐strain‐rate parameter (λ). From these two approaches, the flow phenomena reveals a rich structure of new family of solutions for various values of the magnetic number and λ. The various results for the wall stresses and the displacement thicknesses are presented along with some velocity profiles in both directions. The analysis discovered that the flow separation occurs in the secondary flow direction in the absence of magnetic field, and the flow separation disappears when the applied magnetic field is increased. The flow field is divided into a near‐field (due to viscous forces) and far‐field (due to mainstream flows), and the velocity profiles form because of an interaction between two regions. The magnetic field plays an important role in reducing the thickness of the boundary‐layer. A physical explanation for all observed phenomena is discussed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
Flow induced in a viscoelastic fluid by a linearly stretched sheet is investigated assuming that the fluid is Maxwellian and the sheet is subjected to a transverse magnetic field. The objective is to investigate the effects of parameters such as elasticity number, magnetic number, radiative heat transfer, Prandtl number, and Eckert number on the temperature field above the sheet. To do this, boundary layer theory will be used to simplify energy and momentum equations assuming that fluid physical/rheological properties remain constant. A suitable similarity transformation will be used to transform boundary layer equations from PDEs into ODEs. Homotopy analysis method (HAM) will be invoked to find an analytical solution for the temperature field above the sheet knowing the velocity profiles (see Alizadeh-Pahlavan et al. [Alizadeh-Pahlavan A, Aliakbar V, Vakili-Farahani F, Sadeghy K. MHD flows of UCM fluids above porous stretching sheets using two-auxiliary parameter homotopy analysis method. Commun. Nonlinear Sci Numer Simulat, in press]). The importance of manipulating the transverse velocity component, v, will be discussed on the temperature field above the sheet.  相似文献   

6.
The problem of steady laminar magnetohydrodynamic (MHD) mixed convection heat transfer about a vertical slender cylinder is studied numerically. A uniform magnetic field is applied perpendicular to the cylinder. The resulting governing equations are transformed into the non-similar boundary layer equations and solved using the Keller box method. The velocity and temperature profiles as well as the local skin friction and the local heat transfer parameters are determined for different values of the governing parameters, mainly the transverse curvature parameter, the magnetic parameter, the electric field parameter and the Richardson number. For some specific values of the governing parameters, the results agree very well with those available in the literature. Generally, it is determined that the local skin friction coefficient and the local heat transfer coefficient increase, increasing the Richardson number, Ri (i.e. the mixed convection parameter), electric field parameter E1 and magnetic parameter Mn.  相似文献   

7.
This work is concerned with the two-dimensional boundary layer flow of an upper-convected Maxwell (UCM) fluid in a channel with chemical reaction. The walls of the channel are porous. Employing similarity transformations the governing non-linear partial differential equations are reduced into non-linear ordinary differential equations. The resulting ordinary differential equations are solved analytically using homotopy analysis method (HAM). Expressions for series solutions are derived. The convergence of the obtained series solutions are shown explicitly. The effects of Reynold’s number Re, Deborah number De, Schmidt number Sc and chemical reaction parameter γ on the velocity and the concentration fields are shown through graphs and discussed.  相似文献   

8.
A numerical solution is developed for the viscous, incompressible, magnetohydrodynamic flow in a rotating channel comprising two infinite parallel plates and containing a Darcian porous medium, the plates lying in the xz plane, under constant pressure gradient. The system is subjected to a strong, inclined magnetic field orientated to the positive direction of the y-axis (rotational axis, normal to the xz plane). The Navier–Stokes flow equations for a general rotating hydromagnetic flow are reduced to a pair of linear, viscous partial differential equations neglecting convective acceleration terms, for primary velocity (u′) and secondary velocity (v′) where these velocities are directed along the x and y axes. Only viscous terms are retained in the momenta equations. The model is non-dimensionalized and shown to be controlled by a number of dimensionless parameters. The resulting dimensionless ordinary differential equations are solved using a robust numerical method, Network Simulation Methodology. Full details of the numerics are provided. The present solutions are also benchmarked against the analytical solutions presented recently by Ghosh and Pop [Ghosh SK, Pop I. An analytical approach to MHD plasma behaviour of a rotating environment in the presence of an inclined magnetic field as compared to excitation frequency. Int J Appl Mech Eng 2006;11(4):845–856] for the case of a purely fluid medium (infinite permeability). We study graphically the influence of Hartmann number (Ha, magnetic field parameter), Ekman number (Ek, rotation parameter), Hall current parameter (Nh), Darcy number (Da, permeability parameter), pressure gradient (Np) and also magnetic field inclination (θ) on primary and secondary velocity fields. Additionally we investigate the effects of these multiphysical parameters on the dimensionless shear stresses at the plates. Both primary and secondary velocity are seen to be increased with a rise in Darcy number, owing to a simultaneous reduction in Darcian drag force. Primary velocity is seen to decrease with an increase in Hall current parameter (Nh) but there is a decrease in secondary velocity. The study finds important applications in magnetic materials processing, hydromagnetic plasma energy generators, magneto-geophysics and planetary astrophysics.  相似文献   

9.
We investigate the steady two-dimensional flow of an incompressible water based nanofluid over a linearly semi-infinite stretching sheet in the presence of magnetic field numerically. The basic boundary layer equations for momentum and heat transfer are non-linear partial differential equations. Lie symmetry group transformations are used to convert the boundary layer equations into non-linear ordinary differential equations. The dimensionless governing equations for this investigation are solved numerically using Nachtsheim–Swigert shooting iteration technique together with fourth order Runge–Kutta integration scheme. Effects of the nanoparticle volume fraction ϕ, magnetic parameter M, Prandtl number Pr on the velocity and the temperature profiles are presented graphically and examined for different metallic and non-metallic nanoparticles. The skin friction coefficient and the local Nusselt number are also discussed for different nanoparticles.  相似文献   

10.
Series solution of magnetohydrodynamic (MHD) and rotating flow over a porous shrinking sheet is obtained by a homotopy analysis method (HAM). The viscous fluid is electrically conducting in the presence of a uniform applied magnetic field and the induced magnetic field is neglected for small magnetic Reynolds number. Similarity solutions of coupled non-linear ordinary differential equations resulting from the momentum equation are obtained. Convergence of the obtained solutions is ensured by the proper choice of auxiliary parameter. Graphs are sketched and discussed for various emerging parameters on the velocity field. The variations of the wall shear stress f″(0) and ?g′(0) are also tabulated and analyzed.  相似文献   

11.
In this paper a study is carried out to understand the transition effect of boundary layer flow: (1) due to a suddenly imposed magnetic field over a viscous flow past a stretching sheet and (2) due to sudden withdrawal of magnetic field over a viscous flow past a stretching sheet under a magnetic field. In both the cases the sheet stretches linearly along the direction of the fluid flow. Governing equations have been non-dimensionalised and the non-dimensionalised equations have been solved using the implicit finite difference method of Crank–Nicholson type. Comparison between the steady state exact solutions and the steady state computed solutions has been carried out. Graphical representation of the dimensionless horizontal velocity, vertical velocity and local skin friction profiles of the steady state and unsteady state has been presented. Computation has been carried out for various values of the magnetic parameter M. The obtained results has been interpreted and discussed.  相似文献   

12.
The purpose of present research is to derive analytical expressions for the solution of steady MHD convective and slip flow due to a rotating disk. Viscous dissipation and Ohmic heating are taken into account. The nonlinear partial differential equations for MHD laminar flow of the homogeneous fluid are reduced to a system of five coupled ordinary differential equations by using similarity transformation. The derived solution is expressed in series of exponentially-decaying functions using homotopy analysis method (HAM). The convergence of the obtained series solutions is examined. Finally some figures are sketched to show the accuracy of the applied method and assessment of various slip parameter γ, magnetic field parameter M, Eckert Ec, Schmidt Sc and Soret Sr numbers on the profiles of the dimensionless velocity, temperature and concentration distributions. Validity of the obtained results are verified by the numerical results.  相似文献   

13.
In the present note, we have discussed the effects of partial slip on the peristaltic flow of a MHD Newtonian fluid in an asymmetric channel. The governing equations of motion and energy are simplified using a long wave length approximation. A closed form solution of the momentum equation is obtained by Adomian decomposition method and an exact solution of the energy equation is presented in the presence of viscous dissipation term. The expression for pressure rise is calculated using numerical integration. The trapping phenomena is also discussed. The graphical results are presented to interpret various physical parameter of interest. It is found that the temperature field decreases with the increase in slip parameter L, and magnetic field M, while with the increase in Pr and Ec, the temperature field increases.  相似文献   

14.
We consider a laminar boundary‐layer flow of a viscous and incompressible fluid past a moving wedge in which the wedge is moving either in the direction of the mainstream flow or opposite to it. The mainstream flows outside the boundary layer are approximated by a power of the distance from the leading boundary layer. The variable pressure gradient is imposed on the boundary layer so that the system admits similarity solutions. The model is described using 3‐dimensional boundary‐layer equations that contains 2 physical parameters: pressure gradient (β) and shear‐to‐strain‐rate ratio parameter (α). Two methods are used: a linear asymptotic analysis in the neighborhood of the edge of the boundary layer and the Keller‐box numerical method for the full nonlinear system. The results show that the flow field is divided into near‐field region (mainly dominated by viscous forces) and far‐field region (mainstream flows); the velocity profiles form through an interaction between 2 regions. Also, all simulations show that the subsequent dynamics involving overshoot and undershoot of the solutions for varying parameter characterizing 3‐dimensional flows. The pressure gradient (favorable) has a tendency of decreasing the boundary‐layer thickness in which the velocity profiles are benign. The wall shear stresses increase unboundedly for increasing α when the wedge is moving in the x‐direction, while the case is different when it is moving in the y‐direction. Further, both analysis show that 3‐dimensional boundary‐layer solutions exist in the range −1<α<. These are some interesting results linked to an important class of boundary‐layer flows.  相似文献   

15.
We show that the geometry of a Riemannian manifold (M, ??) is sensitive to the apparently purely homotopy‐theoretic invariant of M known as the Lusternik‐Schnirelmann category, denoted catLS(M). Here we introduce a Riemannian analogue of catLS(M), called the systolic category of M. It is denoted catsys(M) and defined in terms of the existence of systolic inequalities satisfied by every metric ??, as initiated by C. Loewner and later developed by M. Gromov. We compare the two categories. In all our examples, the inequality catsysM ≤ catLSM is satisfied, which typically turns out to be an equality, e.g., in dimension 3. We show that a number of existing systolic inequalities can be reinterpreted as special cases of such equality and that both categories are sensitive to Massey products. The comparison with the value of catLS(M) leads us to prove or conjecture new systolic inequalities on M. © 2006 Wiley Periodicals, Inc.  相似文献   

16.
The group theoretic method is applied for solving problem of the flow of an elastico-viscous liquid past an infinite flat plate in the presence of a magnetic field normal to the plate. The application of one-parameter transformation group reduces the number of independent variables, by one, and consequently the system of governing partial differential equations with boundary conditions reduces to a system of ordinary differential equations with appropriate corresponding conditions. Numerical solution of the velocity field and heat transfer have been obtained. The effect of the magnetic parameter M on velocity field, shear stress, temperature fields and heat transfer has been discussed.  相似文献   

17.
The unsteady hydromagnetic Couette flow of a viscous incompressible electrically conducting fluid in a rotating system has been considered. An exact solution of the governing equations has been obtained by using a Laplace transform. Solutions for the velocity distributions as well as shear stresses have been obtained for small times as well as for large times. It is found that for large times the primary velocity decreases with increase in the rotation parameter K2 while it increases with increase in the magnetic parameter M2. It is also found that with increase in K2, the secondary velocity v1 decreases near the stationary plate while it increases near the moving plate. On the other hand, the secondary velocity decreases with increase in the magnetic parameter.  相似文献   

18.
Summary The purpose of the paper is to consider the stability for wavelike disturbances in the steady, twodimensional, laminar boundary layer of a magnetic field, which is applied uniformly normal to the flat plate. The results show that the critical Reynolds number (R c * ) increases remarkably with the characteristic parameter (). The increase of the critical Reynolds number depends not only on the shape parameter of the velocity distribution in the boundary layer but also on the peculiarity of the velocity profile. It is also found that the boundary layer holds itself laminar all over the flat plate, when the magnetic parameterN is greater than 1.25×10–7, then a reduction of the skin-frictin drag might be expeced.  相似文献   

19.
M. A. Alim  Md. M. Alam 《PAMM》2007,7(1):2100069-2100070
Free convection laminar flow from a vertical circular cone maintained a variable surface temperature with suction and pressure work effects has been investigated. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear system of partial differential equations are reduced to local non-similarity equations. The governing non-similarity equations are then solved numerically by implicit finite difference method together with Keller box scheme. Numerical results are presented in terms of velocity and temperature profiles of the fluid as well as the local skin-friction coefficients and the local heat transfer rate for different values of Prandtl number Pr, suction parameter ξ, temperature gradient parameter n and the pressure work parameter . (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
In this article, the homotopy analysis method is applied to solve nonlinear fractional partial differential equations. On the basis of the homotopy analysis method, a scheme is developed to obtain the approximate solution of the fractional KdV, K(2,2), Burgers, BBM‐Burgers, cubic Boussinesq, coupled KdV, and Boussinesq‐like B(m,n) equations with initial conditions, which are introduced by replacing some integer‐order time derivatives by fractional derivatives. The homotopy analysis method for partial differential equations of integer‐order is directly extended to derive explicit and numerical solutions of the fractional partial differential equations. The solutions of the studied models are calculated in the form of convergent series with easily computable components. The results of applying this procedure to the studied cases show the high accuracy and efficiency of the new technique. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号