首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Oxoperoxo tungsten(VI) complex immobilized on Schiff base-modified Fe3O4 super paramagnetic nanoparticles were synthesized and appropriately characterized using FT-IR, XRD, SEM, TEM, EDX, BET, and VSM analysis. The synthesized nanoparticles efficiently catalyzed oxidation of benzylic alcohols with H2O2 as oxidant in high yields, with high to excellent selectivity. The catalyst can be recovered using an external magnetic field and recycled for subsequent oxidation reactions without any appreciable loss of efficiency. The simple preparation, high activity, excellent selectivity, and simple recoverability of the catalyst are advantageous.  相似文献   

2.
Thin film composite (TFC) reverse osmosis (RO) membranes are semipermeable membranes that are utilized in water purification or water desalination systems. Discarding these membranes after end-of-life leads to environmental problems. Reusing old TFC-RO membranes is one way to solve this problem. For this reason, in this study, used TFC-RO membranes were coated with polydimethylsiloxane (PDMS) for CO2/N2 gas separation application. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was utilized to confirm the crosslinking of coated PDMS. The morphology of PDMS/TFC-RO membranes was characterized using scanning electron microscopy (SEM). The parameters that can affect performance of prepared membranes (N2 permeance and CO2/N2 selectivity) are concentration of PDMS solution, coating time, solvent evaporation time and curing temperature and time. Given that the used membranes don't have uniform surfaces, the first step of this study was to investigate the effect of the above mentioned factors on virgin membranes using fractional factorial design (FFD) of experiments. The results obtained showed that PDMS concentration is the most significant factor that has a negative effect on N2 permeance and positive effect on CO2/N2 selectivity. The reported CO2/N2 selectivity of PDMS membranes was 11–12, but this selectivity for prepared PDMS/TFC-RO membranes was in the range of 6.7–22.5. After determining optimum conditions, the gas separation performance of PDMS coated used TFC-RO membrane under these conditions was finally determined. The results showed that the used membranes had a better performance than virgin membranes.  相似文献   

3.
Titanium dioxide (TiO2) nanoparticles were assembled on the surface of nanofiltration blend membrane. For settling TiO2 on the membrane surface, two membrane categories were used: (i) unmodified polyethersulfone (PES)/polyimide (PI) blend membrane, and (ii) –OH functionalized PES/PI blend membrane with different concentrations of diethanolamine (DEA). These membranes were radiated by UV light after TiO2 depositing with different concentrations. 15 min immersion in colloidal suspension and 15 min UV irradiation with 160 W lamps were used for modification. The modification resulted in the formation of a photo-catalytic property with enhanced membrane hydrophilicity. The self-assembly of TiO2 nanoparticles was established through coordinance bonds with –OH functional groups on the membrane surface. A comparison between the UV irradiated TiO2 deposited blend membrane and deposited-functionalized blend membranes showed that –OH groups originate excellent adhesion of TiO2 nanoparticles on the membrane surface, increase reversible deposition, and diminish irreversible fouling. The membranes were characterized using SEM, FTIR, EDX, contact angle, cross flow filtration, and antifouling measurements. SEM images show that the presence of –OH groups on the DEA-modified membrane surface is the main parameter for extra uniformly settlement of TiO2 nanoparticles on the membrane surface. This procedure is a superior technique for modification of PES/PI nanofiltration membranes to enhance water flux and minimization membrane fouling.  相似文献   

4.
Improved ultrafiltration membranes were prepared by the phase inversion technique via immersion precipitation of synthesized carboxylic acid containing polyamide (CPA) and polyethersulfone (PES) in dimethylacetamide. The CPA was synthesized and characterized by Fourier transform infrared (FTIR), nuclear magnetic resonance, thermogravimetric analysis, and differential scanning calorimetry analyses. Next, the influence of CPA adding and its different concentrations on the performances and membrane structure were investigated. The obtained membranes were characterized by means of FTIR in the attenuated total reflection mode, scanning electron microscopy, and contact angle. The membrane performance studies revealed that the presence of CPA in the membrane structure increased water permeability while reducing protein fouling. It turned out that the PES/CPA membranes had better porosity, more hydrophilic surface, and more vertically finger‐like pores in comparison with the bare PES membrane. When the CPA concentration in the blending solution reached 1 wt%, the water permeability increased from 7.3 to 153.6 L/m2 h1. The attenuated total reflection‐FTIR analysis confirmed that CPA was captured in the membrane matrix.  相似文献   

5.
《Electroanalysis》2006,18(6):551-557
Aluminum(III) porphyrins are examined as potential fluoride selective ionophores in polymeric membrane type ion‐selective electrodes. Membranes formulated with Al(III) tetraphenyl (TPP) or octaethyl (OEP) porphyrins are shown to exhibit enhanced potentiometric selectivity for fluoride over more lipophilic anions, including perchlorate and thiocyanate. However, such membrane electrodes display undesirable super‐Nernstian behavior, with concomitant slow response and recovery times. By employing a sterically hindered Al(III) picket fence porphyrin (PFP) complex as the membrane active species, fully reversible and Nernstian response toward fluoride is achieved. This finding suggests that the super‐Nernstian behavior observed with the nonpicket fence metalloporphyrins is due to the formation of aggregate porphyrin species (likely dimers) within the membrane phase. The steric hindrance of the PFP ligand structure eliminates such chemistry, thus leading to theoretical response slopes toward fluoride. Addition of lipophilic anionic sites into the organic membranes enhances response and selectivity, indicating that the Al(III) porphyrin ionophores function as charged carrier type ionophores. Optimized membranes formulated with Al(III)‐PFP in an o‐nitrophenyloctyl ether plasticized PVC film exhibit fast response to fluoride down to 40 μM, with very high selectivity over SCN?, ClO4?, Cl?, Br? and NO3? (kpot<10?3 for all anions tested). With further refinements in the membrane chemistry, it is anticipated that Al(III) porphyrin‐based membrane electrodes can exhibit potentiometric fluoride response and selectivity that approaches that of the classical solid‐state LaF3 crystal‐based fluoride sensor.  相似文献   

6.
The present work tries to introduce a high‐performance nano‐composite membrane by using polydimethylsiloxane (PDMS) as its main polymer matrix to meet some specific requirements in industrial gas separations. Different nano‐composite membranes were synthesized by incorporating various amounts of nano‐sized silica particles into the PDMS matrix. A uniform dispersion of nano‐particles in the host membranes was obtained. The nano‐composite membranes were characterized morphologically by scanning electron microscopy and atomic force microscopy. Separation properties, permeability, and ideal selectivity of C3H8, CH4, and H2 through the synthesized nano‐composite membranes with different nano‐particle contents (0.5, 1, 1.5, 2, 2.5, and 3 wt%) were investigated at different pressures (2, 3, 4, 5, 6, and 7 atm) and constant temperature (35°C). It was found out that a 2 wt% loading of nano‐particles into the PDMS matrix is optimal to obtain the best separation performance. Afterwards, sorption experiments for the synthesized nano‐composite membranes were carried out, and diffusion coefficients of the gases were calculated based on solution‐diffusion mechanism. Gas permeation and sorption experiments showed an increase in sorption and a decrease in diffusion coefficients of the gases through the nano‐composite membranes by adding nano‐particles into the host polymer matrix. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
A thin polydimethylsiloxane (PDMS) layer on polyethersulfone (PES) support was synthesized and pure and mixed gas permeation of C3H8, CH4, and H2 through it was measured. At first, a macroporous PES support was prepared by using the phase inversion method and characterized. Then, a thin layer of PDMS was coated over the support. Finally, permeation behavior of the synthesized composite membrane was investigated by pure and mixed gas experiments under various operating conditions. The synthesized PDMS/PES membrane showed much better gas permeation performance than others reported in the literature. Pure gas experiments showed that increase in the transmembrane pressure increases the permeability coefficient of heavier gases, C3H8, while decreases those of lighter ones, CH4 and H2. Exactly opposite behavior was observed in mixed gas experiments due to the competitive sorption and diffusion in the plasticized polymer matrix. Temperature was realized to induce similar effects on the permeability of pure and mixed gases. As expected, in rubbery membranes such as PDMS, permeability values of more condensable gases decrease with increasing temperature, whereas those of permanent gases increase. In the case of mixed gas experiments, increase in the C3H8 concentration in feed led to increase in the permeabilities of all the components due to the C3H8‐induced swelling of the PDMS film. High C3H8/H2 and C3H8/CH4 ideal selectivities of 22.1 and 14.7, respectively, at a transmembrane pressure of 7 atm as well as reasonable C3H8 separation factor (SF) values for all mixed gas experiments (in the range of 8.1–16.8) demonstrated the ability of the synthesized PDMS/PES membrane for the separation of organic vapors from permanent gases. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
In our recent study, an ABA amphiphilic triblock copolymer poly(vinyl pyrrolidone)‐b‐poly(methyl methacrylate)‐b‐poly(vinyl pyrrolidone) (PVP‐b‐PMMA‐b‐PVP) was synthesized and directly blended with polyethersulfone (PES) to prepare membranes. To further investigate the effects of surface energy and miscibility on the near‐surface composition profile of the membranes, evaporation membrane and phase inversion membrane of PES/PVP‐b‐PMMA‐b‐PVP were prepared by evaporating the solvent in a vacuum oven, and by a liquid–liquid phase separation technique, respectively. The surface composition and morphology of the membranes were investigated using XPS and tapping mode atomic force microscopy, and the surface segregations of the membranes were compared and discussed. For the evaporation membrane, PVP blocks were buried below the lower surface energy PMMA blocks and PES substrate at the airside surface. For the phase inversion membrane, however, the hydrophilicity of PVP blocks were the biggest driving force because of the high speed exchange between water and solvent, and present at the membrane surface. Thus, the modified PES membrane prepared by using phase inversion method has a layer of PVP block brushes on its surface and has the better anticoagulant property, which might improve the blood compatibility of the membrane and has potential to be used in blood purification. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Herein we evaluate the influence of an electric field on the coupling of two delocalized electrons in the mixed‐valence polyoxometalate (POM) [GeV14O40]8? (in short V14) by using both a t‐J model Hamiltonian and DFT calculations. In absence of an electric field the compound is paramagnetic, because the two electrons are localized on different parts of the POM. When an electric field is applied, an abrupt change of the magnetic coupling between the two delocalized electrons can be induced. Indeed, the field forces the two electrons to localize on nearest‐neighbors metal centers, leading to a very strong antiferromagnetic coupling. Both theoretical approaches have led to similar results, emphasizing that the sharp spin transition induced by the electric field in the V14 system is a robust phenomenon, intramolecular in nature, and barely influenced by small changes on the external structure.  相似文献   

10.
Polyethersulfone (PES) and poly(1‐vinylpyrrolidone) (PVP) were used to prepare ultrafiltration membranes with grafted Fe3O4 magnetic nanoparticles (PVP‐g‐Fe3O4@SiO2). The structure of synthesized PVP‐g‐Fe3O4@SiO2 was confirmed by FT‐IR and SEM analysis. Physical properties of blend membranes such as thermal resistance, Tensile strength, water uptake, and hydrophilicity were also investigated. Blended membranes of PES/PVP‐g‐Fe3O4@SiO2 have exhibited higher thermal resistance due to increasing the modified nanoparticle content. The hydrophilicity of the synthesized PES/PVP‐g‐Fe3O4@SiO2 membranes also improved by increasing the PVP‐g‐Fe3O4@SiO2 content. As expected, increasing the hydrophilicity of blended membrane, caused enhancement of fouling resistance in membranes. Results showed that the content of PVP‐g‐Fe3O4@SiO2 has different effects on the properties of synthesized composite membranes. Despite increasing the content of PVP‐g‐Fe3O4@SiO2 has a negative effect on elongation, positive effects on maximum stress was observed. Moreover, the water uptake of synthesized membranes was significantly enhanced in comparison to other similar studies.  相似文献   

11.
《先进技术聚合物》2018,29(4):1303-1312
New thin film composite (TFC) membrane was prepared via coating of Pebax on PSf‐PES blend membrane as support, and its application in wastewater treatment was investigated. To modify this membrane, hydrophilic TiO2 nanoparticles were coated on its surface at different loadings via dip coating technique. The as‐prepared membrane was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), field emission SEM, and contact angle analysis. The Fourier transform infrared spectroscopy analysis and surface SEM images indicated that TiO2 was successfully coated on the membrane surface. In addition, the results stated that the hydrophilicity and roughness of membrane surface increased by addition of TiO2 nanoparticles. Performance of TFC and modified TFC membranes was evaluated through humic acid removal from aqueous solution. Maximum permeate flux and humic acid rejection were obtained at 0.03 and 0.01 wt% TiO2 loadings, respectively. Rejection was enhanced from 96.38% to 98.92% by the increase of feed concentration from 10 to 30 ppm. Additionally, membrane antifouling parameters at different pressures and feed concentration were determined. The results indicated that surface modification of membranes could be an effective method for improvement of membrane antifouling property.  相似文献   

12.
In order to improve the selectivity and the stability and the stability for gas permeation of poly (1-trimethylsilyl-1-propyne) (PTMSP) membrane, it was chemically modified by grafting polydimethylsiloxane (PDMS) chains. The graft copolymers were synthesized by four different methods via metallation of PTMSP with n-butyllithium. PDMS content of the graft co-polymers was controlled in the range of 4–92 mol %. Very tough, thin membranes could be prepared from these graft copolymers using a solvent casting method. Thermal property and gas permeability of the copolymer membranes thus obtained were evaluated. These membranes were relatively thermally stable, and the softening points were over about 150°C. Oxygen permeability coefficients Po2 and selectivity Po2/PN2 of PTMSP/PDMS graft copolymers depended on the PDMS content, the former was in the range of 1 X 10?8 to 2 × 10?7 cm3 (STP)· cm/(cm2· s · cm. Hg) and the latter was 2.0–3.1. Minimum values of PO2 and PN2 occured at PDMS content of about 55 mol %. The introduction of more than 60 mol % of PDMS resulted in oxygen permeability coefficient which was maintained for more than one moth (PO2 = 2 ? 6 × 10 ?8 cm 3 (STP)· cm/(cm2·s·cm Hg), PO2/PN2 = 2.3–2.7).  相似文献   

13.
An amine‐appended hierarchical Ca‐A zeolite that can selectively capture CO2 was synthesized and incorporated into inexpensive membrane polymers, in particular polyethylene oxide and Matrimid, to design mixed‐matrix membranes with high CO2/CH4 selectivities. Binary mixture permeation testing reveals that amine‐appended mesoporous Ca‐A is highly effective in improving CO2/CH4 selectivity of polymeric membranes. In particular, the CO2/CH4 selectivity of the polyethylene oxide membrane increases from 15 to 23 by incorporating 20 wt % amine‐appended Ca‐A zeolite. Furthermore, the formation of filler/polymer interfacial defects, which is typically found in glassy polymer‐zeolite pairs, is inhibited owing to the interaction between the amine groups on the external surface of zeolites and polymer chains. Our results suggest that the amine‐appended hierarchial Ca‐A, which was utilized in membrane fabrication for the first time, is a good filler material for fabricating a CO2‐selective mixed‐matrix membrane with defect‐free morphology.  相似文献   

14.
In this study, graphene nanosheets (GNs) were incorporated into polyethersulfone (PES) by phase inversion approach for preparing PES-GNs mixed matrix membranes (MMMs). To investigate the impact of filler content on membrane surface morphology, thermal stability, chemical composition, porosity and mechanical properties, MMMs were constructed with various GNs loadings (0.01, 0.02, 0.03, and 0.04 wt%). ?The performance of prepared MMMs was tested for separation and selectivity of CO2, N2, H2 and CH4 gases at various pressures from 1 to 6 bar and temperature varying from 20 to 60 °C. It was observed that, compared to the pristine PES membrane, the prepared MMMs significantly improved the gas separation and selectivity performance with adequate mechanical stability. The permeability of CO2, N2, H2 and CH4 for the PES + 0.04 wt% GNs increases from 9 to 2246, 11 to 2235, 9 to 7151, and 3 to 4176 Barrer respectively, as compared with pure PES membrane at 1 bar and 20 °C due to improving the membrane absorption and porosity. In addition, by increasing the pressure, the permeability and selectivity of CO2, N2, H2 and CH4 are increased due to the increased driving force for the transport of gas via membranes. Furthermore, the permeability of CO2, N2, H2 and CH4 increased by increasing the temperature from 20 to 60 °C due to the plasticization in the membranes and the improvement in polymer chain movement. This result proved that the prepared membranes can be used for gas separation applications.  相似文献   

15.
In this study, effects of methanol, ethanol and 1‐propanol as variable nonsolvent additives (NSAs) on the morphology and performance of flat sheet asymmetric polyethersulfone (PES) membranes were investigated. The membranes were prepared from PES/Polyvinylpyrrolidone (PVP)/N‐methyl‐2‐pyrrolidone (NMP) system via phase inversion. The obtained results indicate that with the addition of NSAs to the casting solution, the membrane morphology changes slowly from macrovoids to an asymmetric structure with finger‐like pores. By increasing the NSAs concentrations in the casting solution and decreasing their polarities, the membrane structure changes from finger‐like pores to sponge. The AFM and SEM images reveal that addition of NSA to the casting solution decreases the pore size of the prepared membranes and reduces the pure water flux and BSA solution flux, while increasing the protein rejection. Surface analysis of the membranes showed that mean pore size and surface porosity of the prepared membranes with NSAs in the casting solution are smaller compared with those of the membrane prepared with no NSA. Pure water flux and BSA solution flux through the membranes decrease and BSA rejection increases with increase in the concentration of NSAs and decrease in their polarity. Finally, it can be concluded that the Tg values of the PES membranes increase by addition of NSAs to the casting solution. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
A series of well‐defined diblock copolymers (BCPs) consisting of poly(ethylene glycol) (PEG) and poly(dimethylsiloxane) (PDMS) were synthesized and blended with commercially available PEBAX® 2533 to form the active layer of thin‐film composite (TFC) membranes, via spin‐coating. BCPs with a PEG component ranging from 1 to 10 kDa and a PDMS component ranging from 1 to 10 kDa were synthesized by a facile condensation reaction of hydroxyl terminated PEG and carboxylic acid functionalized PDMS. The BCP/PEBAX® 2533 blends up to 50 wt % on cross‐linked PDMS gutter layers were tested at 35 °C and 350 kPa. TFC membranes containing BCPs of 1 kDa PEG and 1–5 kDa PDMS produced optimal results with CO2 permeances of approximately 1000 GPU which is an increase up to 250% of the permeance of pure PEBAX® 2533 composite membranes, while maintaining a CO2/N2 selectivity of 21. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1500–1511  相似文献   

17.
In the present study, modification of nanoparticles (NPs) was investigated to mitigate aggregation of SiO2 nanoparticles and improve the polymeric membrane's performance. For this purpose, the surface of SiO2 nanoparticles was activated with amine groups, and polymethacrylic acid (PMAA) was grafted on the surface of NPs by atom transfer radical polymerization. Modified NPs were characterized by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) tests. Polyethersulfone (PES) membranes were fabricated with both SiO2 and SiO2‐g‐PMAA NPs via nonsolvent‐induced phase separation method. The fabricated membranes were characterized regarding their permeability, hydrophilicity, and porosity properties, and their separation efficiency was tested using the synthetic oil‐in‐water emulsion. The surface and cross‐sectional morphologies of membranes were observed by field emission scanning electron microscopy (FESEM). The experimental trials showed that modified NPs dispersed more uniformly in the structure of membranes and hydroxyl groups on the surface of NPs acted more effectively. Modification of NPs enhance the membrane performance in terms of permeate flux, hydrophilicity, and porosity. NPs modification improved the permeate flux about 46%. Oil rejection for all tested membranes was more than 98%, and modification of NPs did not reduce the rejection of membranes. The optimum concentration was obtained as 1 wt.% and 1.5 wt.% for SiO2 and SiO2‐g‐PMAA, respectively. Aggregation effect dominated at concentrations beyond the optimum values that decreased the permeate flux, consequently.  相似文献   

18.
The retardation effect of oxygen and external magnetic field on the yield of radicals in hydroperoxide decomposition in catalytic nanoreactors was discovered. Mixed reverse micelles formed by the cationic surfactants (Surf) and hydroperoxide {mLOOH...nSurf} play the role of nanoreactors. Similar effects of oxygen and external magnetic field (60–150 mT) on the yield of radicals are observed in the catalytic decomposition of hydroperoxide in the presence of acetylcholine. It is noteworthy that the retardation effect of the magnetic field decreases in the presence of paramagnetic particles such as oxygen and relatively stable radicals.  相似文献   

19.
An efficient three‐component reaction of aromatic aldehydes, 6‐aminouracil/6‐amino‐1,3‐dimethyluracil and 4‐hydroxycoumarin in the presence of a novel heterogeneous catalyst H3PMo12O40‐immobilized Co3O4/chitosan led to a synthesis of a new class of pyrimidinedione derivatives under reflux conditions. The magnetically recoverable nanocomposite of Co3O4/chitosan/H3PMo12O40 was fully characterized by Fourier transform‐infrared spectrophotometry, scanning electron microscopy, X‐ray powder diffraction, energy‐dispersive X‐ray spectroscopy, vibrating‐sample magnetometry and N2 adsorption–desorption by Brunauer–Emmett–Teller analysis. Results show that Keggin‐type 12‐molybdophosphoric acid immobilized into the network of the cross‐linked chitosan with super‐paramagnetic Co3O4 nanoparticles. The present method offers several advantages, such as simple procedure, short reaction times and excellent yields of products. The novelty of the catalyst, high catalytic activity, easy separation from the reaction with an external magnetic field and reusability of the catalyst in six consecutive runs are additional eco‐friendly attributes of this catalytic system.  相似文献   

20.
A new application for used reverse osmosis (RO) membranes as gas separation membranes was studied. In this regard, firstly, three pretreatment procedures were used to remove the foulants from the surface of used membrane and then they were coated with polydimethylsiloxane (PDMS). The results indicated that PDMS-coated used RO membranes were capable of separating O2/N2 and CO2/N2. The maximum O2/N2 and CO2/N2 selectivities of coated membranes were 5.9 and 32.5, respectively. The O2/N2 and CO2/N2 selectivities of PDMS membrane were reported in the range of 2.1–2.2 and 11–12, respectively. Finally, an economic assessment was carried out to compare prepared PDMS coated RO membranes with commercial PPO membrane. This showed that coated membranes are less expensive than PPO membrane for CO2/N2 gas separation. The outcome of the research was a simple method for converting used RO membranes to cost effective gas separation membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号