首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An implicit Euler finite‐volume scheme for a spinorial matrix drift‐diffusion model for semiconductors is analyzed. The model consists of strongly coupled parabolic equations for the electron density matrix or, alternatively, of weakly coupled equations for the charge and spin‐vector densities, coupled to the Poisson equation for the electric potential. The equations are solved in a bounded domain with mixed Dirichlet–Neumann boundary conditions. The charge and spin‐vector fluxes are approximated by a Scharfetter–Gummel discretization. The main features of the numerical scheme are the preservation of nonnegativity and bounds of the densities and the dissipation of the discrete free energy. The existence of a bounded discrete solution and the monotonicity of the discrete free energy are proved. For undoped semiconductor materials, the numerical scheme is unconditionally stable. The fundamental ideas are reformulations using spin‐up and spin‐down densities and certain projections of the spin‐vector density, free energy estimates, and a discrete Moser iteration. Furthermore, numerical simulations of a simple ferromagnetic‐layer field‐effect transistor in two space dimensions are presented. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 819–846, 2016  相似文献   

2.
In this article, we study an explicit scheme for the solution of sine‐Gordon equation when the space discretization is carried out by an overlapping multidomain pseudo‐spectral technique. By using differentiation matrices, the equation is reduced to a nonlinear system of ordinary differential equations in time that can be discretized with the explicit fourth‐order Runge–Kutta method. To achieve approximation with high accuracy in large domains, the number of space grid points must be large enough. This yields very large and full matrices in the pseudo‐spectral method that causes large memory requirements. The domain decomposition approach provides sparsity in the matrices obtained after the discretization, and this property reduces storage for large matrices and provides economical ways of performing matrix–vector multiplications. Therefore, we propose a multidomain pseudo‐spectral method for the numerical simulation of the sine‐Gordon equation in large domains. Test examples are given to demonstrate the accuracy and capability of the proposed method. Numerical experiments show that the multidomain scheme has an excellent long‐time numerical behavior for the sine‐Gordon equation in one and two dimensions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
In this article, an efficient fourth‐order accurate numerical method based on Padé approximation in space and singly diagonally implicit Runge‐Kutta method in time is proposed to solve the time‐dependent one‐dimensional reaction‐diffusion equation. In this scheme, we first approximate the spatial derivative using the second‐order central finite difference then improve it to fourth‐order by applying Padé approximation. A three stage fourth‐order singly diagonally implicit Runge‐Kutta method is then used to solve the resulting system of ordinary differential equations. It is also shown that the scheme is unconditionally stable, and is suitable for stiff problems. Several numerical examples are solved by the scheme and the efficiency and accuracy of the new scheme are compared with two widely used high‐order compact finite difference methods. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1423–1441, 2011  相似文献   

4.
An implicit Euler finite‐volume scheme for a degenerate cross‐diffusion system describing the ion transport through biological membranes is proposed. The strongly coupled equations for the ion concentrations include drift terms involving the electric potential, which is coupled to the concentrations through the Poisson equation. The cross‐diffusion system possesses a formal gradient‐flow structure revealing nonstandard degeneracies, which lead to considerable mathematical difficulties. The finite‐volume scheme is based on two‐point flux approximations with “double” upwind mobilities. The existence of solutions to the fully discrete scheme is proved. When the particles are not distinguishable and the dynamics is driven by cross diffusion only, it is shown that the scheme preserves the structure of the equations like nonnegativity, upper bounds, and entropy dissipation. The degeneracy is overcome by proving a new discrete Aubin–Lions lemma of “degenerate” type. Numerical simulations of a calcium‐selective ion channel in two space dimensions show that the scheme is efficient even in the general case of ion transport.  相似文献   

5.
We develop an upwind finite volume (UFV) scheme for unsteady‐state advection‐diffusion partial differential equations (PDEs) in multiple space dimensions. We apply an alternating direction implicit (ADI) splitting technique to accelerate the solution process of the numerical scheme. We investigate and analyze the reason why the conventional ADI splitting does not satisfy maximum principle in the context of advection‐diffusion PDEs. Based on the analysis, we propose a new ADI splitting of the upwind finite volume scheme, the alternating‐direction implicit, upwind finite volume (ADFV) scheme. We prove that both UFV and ADFV schemes satisfy maximum principle and are unconditionally stable. We also derive their error estimates. Numerical results are presented to observe the performance of these schemes. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 211–226, 2003  相似文献   

6.
Parallel‐in‐time algorithms have been successfully employed for reducing time‐to‐solution of a variety of partial differential equations, especially for diffusive (parabolic‐type) equations. A major failing of parallel‐in‐time approaches to date, however, is that most methods show instabilities or poor convergence for hyperbolic problems. This paper focuses on the analysis of the convergence behavior of multigrid methods for the parallel‐in‐time solution of hyperbolic problems. Three analysis tools are considered that differ, in particular, in the treatment of the time dimension: (a) space–time local Fourier analysis, using a Fourier ansatz in space and time; (b) semi‐algebraic mode analysis, coupling standard local Fourier analysis approaches in space with algebraic computation in time; and (c) a two‐level reduction analysis, considering error propagation only on the coarse time grid. In this paper, we show how insights from reduction analysis can be used to improve feasibility of the semi‐algebraic mode analysis, resulting in a tool that offers the best features of both analysis techniques. Following validating numerical results, we investigate what insights the combined analysis framework can offer for two model hyperbolic problems, the linear advection equation in one space dimension and linear elasticity in two space dimensions.  相似文献   

7.
We introduce the concept of fast wavelet‐Taylor Galerkin methods for the numerical solution of partial differential equations. In wavelet‐Taylor Galerkin method discretization in time is performed before the wavelet based spatial approximation by introducing accurate generalizations of the standard Euler, θ and leap‐frog time‐stepping scheme with the help of Taylor series expansions in the time step. We will present two different time‐accurate wavelet schemes to solve the PDEs. First, numerical schemes taking advantage of the wavelet bases capabilities to compress the operators and sparse representation of functions which are smooth, except for in localized regions, up to any given accuracy are presented. Here numerical experiments deal with advection equation with the spiky solution in one dimension, two dimensions, and nonlinear equation with a shock in solution in two dimensions. Second, our schemes deal with more regular class of problems where wavelets are not efficient procedure for data compression but we can use the good approximation properties of wavelet. Here time‐accurate schemes lead to consistent mass matrix in an explicit time stepping, which can be solved by approximate factorization techniques. Numerical experiment deals with more regular class of problems like heat equation as well as coupled linear system in two dimensions. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

8.
The aim of this article is to present an efficient numerical procedure for solving nonlinear integro‐differential equations. Our method depends mainly on a Taylor expansion approach. This method transforms the integro‐differential equation and the given conditions into the matrix equation which corresponds to a system of nonlinear algebraic equations with unkown Taylor coefficients. The reliability and efficiency of the proposed scheme are demonstrated by some numerical experiments and performed on the computer program written in Maple10. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

9.
In this work, we study the numerical simulation of the one‐dimensional reaction‐diffusion system known as the Gray‐Scott model. This model is responsible for the spatial pattern formation, which we often meet in nature as the result of some chemical reactions. We have used the trigonometric quartic B‐spline (T4B) functions for space discretization with the Crank‐Nicolson method for time integration to integrate the nonlinear reaction‐diffusion equation into a system of algebraic equations. The solutions of the Gray‐Scott model are presented with different wave simulations. Test problems are chosen from the literature to illustrate the stationary waves, pulse‐splitting waves, and self‐replicating waves.  相似文献   

10.
The cubic B‐spline collocation scheme is implemented to find numerical solution of the generalized Burger's–Huxley equation. The scheme is based on the finite‐difference formulation for time integration and cubic B‐spline functions for space integration. Convergence of the scheme is discussed through standard convergence analysis. The proposed scheme is of second‐order convergent. The accuracy of the proposed method is demonstrated by four test problems. The numerical results are found to be in good agreement with the exact solutions. Results are compared with other results given in literature. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

11.
12.
This study considers the problem of control and synchronization between fractional‐order and integer‐order, N‐components reaction‐diffusion systems with nonidentical coefficients and different nonlinear parts. The control scheme is designed using the Lyapunov direct method. The results are exemplified by two significant biochemical models, namely, the fractional‐order Lengyel‐Epstein model and the Gray‐Scott model. To illustrate the effectiveness of the proposed scheme, numerical simulations are performed in one and two space dimensions using Homotopy Analysis Method (HAM).  相似文献   

13.
New one‐leg multistep time discretizations of nonlinear evolution equations are investigated. The main features of the scheme are the preservation of the non‐negativity and the entropy dissipation structure of the diffusive equations. The key ideas are to combine Dahlquist's G‐stability theory with entropy dissipation methods and to introduce a nonlinear transformation of variables, which provides a quadratic structure in the equations. It is shown that G‐stability of the one‐leg scheme is sufficient to derive discrete entropy dissipation estimates. The general result is applied to a cross‐diffusion system from population dynamics and a nonlinear fourth‐order quantum diffusion model, for which the existence of semidiscrete weak solutions is proved. Under some assumptions on the operator of the evolution equation, the second‐order convergence of solutions is shown. Moreover, some numerical experiments for the population model are presented, which underline the theoretical results. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1119–1149, 2015  相似文献   

14.
We develop a nonconventional single‐node characteristic collocation method with piecewise‐cubic Hermite polynomials for the numerical simulation to unsteady‐state advection‐diffusion transport partial differential equations. This method greatly reduces the number of unknowns in the conventional collocation method, and generates accurate numerical solutions even if very large time steps are taken. The reduction of number of nodes has great potential for problems defined on high space dimensions, which appears in such problems as quantification of uncertainties in subsurface porous media. The method developed here is easy to formulate. Numerical experiments are presented to show the strong potential of the method. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 786–802, 2011  相似文献   

15.
In this note, a non‐standard finite difference (NSFD) scheme is proposed for an advection‐diffusion‐reaction equation with nonlinear reaction term. We first study the diffusion‐free case of this equation, that is, an advection‐reaction equation. Two exact finite difference schemes are constructed for the advection‐reaction equation by the method of characteristics. As these exact schemes are complicated and are not convenient to use, an NSFD scheme is derived from the exact scheme. Then, the NSFD scheme for the advection‐reaction equation is combined with a finite difference space‐approximation of the diffusion term to provide a NSFD scheme for the advection‐diffusion‐reaction equation. This new scheme could preserve the fixed points, the positivity, and the boundedness of the solution of the original equation. Numerical experiments verify the validity of our analytical results. Copyright © 2014 JohnWiley & Sons, Ltd.  相似文献   

16.
The three‐dimensional displacement of two‐phase flow in porous media is a preliminary problem of numerical simulation of energy science and mathematics. The mathematical model is formulated by a nonlinear system of partial differential equations to describe incompressible miscible case. The pressure is defined by an elliptic equation, and the concentration is defined by a convection‐dominated diffusion equation. The pressure generates Darcy velocity and controls the dynamic change of concentration. We adopt a conservative block‐centered scheme to approximate the pressure and Darcy velocity, and the accuracy of Darcy velocity is improved one order. We use a block‐centered upwind multistep method to solve the concentration, where the time derivative is approximated by multistep method, and the diffusion term and convection term are treated by a block‐centered scheme and an upwind scheme, respectively. The composite algorithm is effective to solve such a convection‐dominated problem, since numerical oscillation and dispersion are avoided and computational accuracy is improved. Block‐centered method is conservative, and the concentration and the adjoint function are computed simultaneously. This physical nature is important in numerical simulation of seepage fluid. Using the convergence theory and techniques of priori estimates, we derive optimal estimate error. Numerical experiments and data show the support and consistency of theoretical result. The argument in the present paper shows a powerful tool to solve the well‐known model problem.  相似文献   

17.
We developed a nonconventional Eulerian‐Lagrangian single‐node collocation method for transient advection‐diffusion transport partial differential equations in multiple space dimensions. This method greatly reduces the number of unknowns in conventional collocation method, generates accurate numerical solutions, and allows large time steps to be used in numerical simulations. We perform numerical experiments to show the strong potential of the method. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 284–301, 2004  相似文献   

18.
In this paper a two‐dimensional solute transport model is considered to simulate the leaching of copper ore tailing using sulfuric acid as the leaching agent. The mathematical model consists in a system of differential equations: two diffusion–convection‐reaction equations with Neumann boundary conditions, and one ordinary differential equation. The numerical scheme consists in a combination of finite volume and finite element methods. A Godunov scheme is used for the convection term and an P1‐FEM for the diffusion term. The convergence analysis is based on standard compactness results in L2. Some numerical examples illustrate the effectiveness of the scheme. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
We develop a mass conservative Eulerian‐Lagrangian control volume scheme (ELCVS) for the solution of the transient advection‐diffusion equations in two space dimensions. This method uses finite volume test functions over the space‐time domain defined by the characteristics within the framework of the class of Eulerian‐Lagrangian localized adjoint characteristic methods (ELLAM). It, therefore, maintains the advantages of characteristic methods in general, and of this class in particular, which include global mass conservation as well as a natural treatment of all types of boundary conditions. However, it differs from other methods in that class in the treatment of the mass storage integrals at the previous time step defined on deformed Lagrangian regions. This treatment is especially attractive for orthogonal rectangular Eulerian grids composed of block elements. In the algorithm, each deformed region is approximated by an eight‐node region with sides drawn parallel to the Eulerian grid, which significantly simplifies the integration compared with the approach used in finite volume ELLAM methods, based on backward tracking, while retaining local mass conservation at no additional expenses in terms of accuracy or CPU consumption. This is verified by numerical tests which show that ELCVS performs as well as standard finite volume ELLAM methods, which have previously been shown to outperform many other well‐received classes of numerical methods for the equations considered. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2012  相似文献   

20.
Fractional advection‐dispersion equations are used in groundwater hydrologhy to model the transport of passive tracers carried by fluid flow in a porous medium. In this paper we present two reliable algorithms, the Adomian decomposition method and variational iteration method, to construct numerical solutions of the space‐time fractional advection‐dispersion equation in the form of a rabidly convergent series with easily computable components. The fractional derivatives are described in the Caputo sense. Some examples are given. Numerical results show that the two approaches are easy to implement and accurate when applied to space‐time fractional advection‐dispersion equations. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号