首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In a previous paper the structure and the physical properties of melt mixed polyamide 66 (PA66)/polyamide 12 (PA12) blends characterized by different compositions have been investigated by means of morphological and physical analyses. A low amount of organically‐modified layered silicate (OMLS, 4 wt%) was introduced in order to evaluate its effect on blends structure and components miscibility. This paper completes the characterization of these materials investigating their thermal properties by means of standard and modulated differential scanning calorimetry (DSC, MDSC), dynamic‐mechanical analysis (DMA), and thermogravimetric analysis (TGA). The partial miscibility of PA66 and PA12, with phase separation depending on blend composition, has been confirmed by analyzing the glass transition temperature (Tg) dependence on composition as well as the existence of strong segmental interactions between polymer components. A compatibilizing action of OMLS has been observed because of a lowering of interfacial tension avoiding coalescence phenomena between particles during melt mixing process. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The use of polymeric blends can increase the range of structures and properties of selective laser sintering (SLS) parts. This study investigates the processing of a binary polar system using polyamide 6 (PA6) and polyamide 12 (PA12) by SLS. The mixture composition and processing conditions, and their influence on the dynamic mechanical properties of the specimens manufactured were evaluated. The maximum tan δ values suggest that PA6 and PA12 have similar visco-dissipative behavior. The PA6/PA12 blends behavior varied according to the relaxation phenomena of the pure components, proportionally to the blend composition. The creep test showed that blends with a higher amount of PA6 had greater plastic deformation and less elastic recovery. In the fatigue test the 20/80 and 50/50 blends presented good fatigue resistance under the test conditions.  相似文献   

3.
侧链液晶离聚物对PA1010/PP共混体系的增容作用   总被引:2,自引:0,他引:2  
将聚酰胺(PA1010)、聚丙烯(PP)和热致型侧链液晶离聚物(SLCI)进行熔融共混,采用FTIR,SEM,DSC,WAXD研究测定了共混物中的相互作用,用形态结构,热行为和结晶行为,系统地研究了SLCI对PA101/PP共混物的增容作用。结果表明,SLCI有效地改善了PA1010/PP共混物的形态结构,增强了PA1010与PP链间的相互作用,使PA1010/PP熔点升高,结晶度提高。  相似文献   

4.
The blends composed of polyamide 6 (PA6) and polyamide 66 (PA66) were obtained using two different preparation methods, one of which was the melt‐mixing through a twin‐screw extruder and the subsequent injection molding; and the other, the in situ blending through anionic polymerization of ε‐caprolactam in the presence of PA66. For the former, there existed a remarkable improvement in toughness but a drastic drop in strength and modulus; however, for the latter, a reverse but less significant trend of mechanical properties change appeared. Various characterizations were conducted, including the analyses of crystalline morphology, crystallographic form, and crystallization and melting behaviors using polarized optical microscopy (POM), wide‐angle X‐ray diffraction (WAXD), and differential scanning calorimetry (DSC), respectively; observation of morphology of fractured surface with scanning electron microscope (SEM); measurement of glass transition through dynamic mechanical analysis (DMA); and the intermolecular interaction as well as the interchange reaction between the two components by Fourier transform infrared spectrometry (FT‐IR) and 13C solution NMR. The presence and absence of interchange reaction was verified for the in situ and melt‐mixed blends, respectively. It is believed that the transreaction resulted in a drop in glass transition temperature (Tg) for the in situ blends, contrary to an increase of Tg with increasing PA66 content for the melt‐mixed ones. And the two kinds of fabrication methods led to significant differences in the crystallographic form, spherulite size and crystalline content and perfection as well. Accordingly, it is attempted to explain the reasons for the opposite trends of changes in the mechanical properties for these two blends. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1176–1186, 2007  相似文献   

5.
The effect of nanoclay fraction on the linear and non-linear tensile properties of a polyethylene/polyamide 12 blend with droplet morphology was investigated. All ternary blends were prepared at a fixed polyamide (PA) weight fraction of 20%, and at clay volume fractions varying from 0.5 to 2.5% relative to PA. Scanning electron microscopy and transmission electron microscopy were used to characterize the morphology of the blends and the clay interphase structure. The nanoclay content was shown to strongly influence both linear and non-linear tensile properties. Young's modulus, elongation at yield, yield strength, tensile strength and elongation at break as a function of clay fraction were studied and discussed in terms of morphological changes and strain-induced structural reorganization of the clay interphase.  相似文献   

6.
This study investigates the processing of blends of polyamide 6 (PA6) and polyamide 12 (PA12) by selective laser sintering (SLS) using a CO2 laser. Powder properties of undiluted polymers, mixture composition, and processing parameters, as well as their influence on the microstructure of the specimens manufactured, were evaluated. Polyamides showed higher absorption of laser energy during the sintering of blend specimens, with subsequent thermal energy transfer to the melting of the polymeric phases. The structure of parts obtained by SLS is dependent on the process parameters and the characteristics of the powder material to be processed. The microstructures of PA6/PA12 blend specimens were heterogeneous, with co-continuous and disperse phases depending on the quantity of PA12. The porosity and crystallinity also changed as a function of the component proportions. The use of polymeric blends can increase the range of structures and properties of SLS parts.  相似文献   

7.
于建 《高分子科学》2008,(6):689-696
Two master-batches,polyamide 66 (PA66)/organo-montmorillonite (OMMT) and polyamide 6 (PA6)/OMMT, prepared by melt compounding with methyl methacrylate (MMA) as co-intercalation agent,have been used to prepare nearly exfoliated PA661montmorillonite (MMT) nanocomposites.The resulting nanocomposites are compared in view of their morphology and properties.Nano-scale dispersion of OMMT is realized in both types of nanocomposites,as revealed by XRD,TEM and Molau tests.PA66/MMT nanocomposites having superior me...  相似文献   

8.
Oriented polymer blends whose major component is high‐density polyethylene (HDPE) are strained until failure. Two‐dimensional (2D) small‐angle X‐ray scattering (SAXS) patterns monitor the nanostructure evolution, which is related to the macroscopic mechanical evolution. Data evaluation methods for high‐precision determination of macroscopic and nanoscopic parameters are presented. The hardest materials exhibit a very inhomogeneous nanodomain structure. During straining, their domains appear to be wedged and inhibit transverse contraction on the nanometer scale. Further components of the blends are polyamide 6 (PA6) or polyamide 12 (PA12) (20–30%) and Yparex® 8102 (YP) as compatibilizer (0–10%). Some HDPE/PA6 blends are additionally loaded with commercial nanoclays (Nanomer® or Cloisite®), the respective amounts being 7.5% and 5% with respect to PA. Blending of HDPE with PA12 causes no synergistic effect. In the absence of nanoclay, PA6 and HDPE form a heterogeneous nanostructure with high macroscopic Young's modulus. After addition of YP a rather homogeneous scaffold structure is observed in which some of the PA6 microfibrils and HDPE crystallites appear to be rigidly connected, but the modulus has decreased. Both kinds of nanoclay induce a transition in the HDPE/PA6 blends from a structure without transverse correlation among the microfibrils into a macrolattice with 3D correlations among the HDPE domains from neighboring microfibrils. In the range of extensions between 0.7 and 3.5%, the scattering entities with 3D correlation show transverse elongation instead of transverse contraction. The process is interpreted as overcoming a correlation barrier executed by the crystallites in an evasion‐upon‐approaching mechanism. During continued straining, the 3D correlation is reduced or completely removed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 237–250, 2010  相似文献   

9.
In this work, the transport properties of the system formed by polyamide 6 (PA6) and polyhydroxyamino‐ether resin (PHAE) have been studied after characterizing the miscibility behavior. A single glass transition has been observed using differential scanning calorimetry that usually means total miscibility, but measurements by solid‐state cross‐polarization magic angle spinning NMR have shown that this system is only partially miscible, in good agreement with phase behavior reported before. Both carbon dioxide and water vapor transport properties of PA6/PHAE blends have been measured. For both penetrants, permeability coefficient shows an interesting negative deviation from the additive value, even the barrier character to carbon dioxide of pure PHAE is maintained up to 60 % in PA6 composition. Besides, PHAE reduces the plasticization effect of water in PA6. These improvements are very interesting for the PA 6 due to its wide use in packaging applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1625–1634, 2009  相似文献   

10.
PET/PA66/液晶共聚酯酰胺共混体系的流变性能   总被引:5,自引:0,他引:5  
采用SEM1、热偏光显微研究了聚对苯二甲乙二酯(PET)/聚酰胺66(PA66)/热致液晶共聚酯酰胺(LC30)三元共混物的形态结构;利用Instron3211型毛细管流变仪研究了共混物的流变性能,结果表明:PET/PA66/LC30共混物为一热力学不相容的多相聚合物体系,LC30的加入提高了PET/PA66的相容性,有效地改善了PET/PA66共混物的流变性能,PET/PA66/LC30三元共混  相似文献   

11.
The aim of the work presented is to evaluate the mechanisms and phase interactions in ternary blends based on different polyamides and functionalised elastomers, and to establish a correlation between the morphology controlled by the specific binary interactions, and physical and technological properties, respectively. The properties of the ternary system polyamide 6/polyamide 66/ elastomer depend on the specific blend morphology which is determined mainly by the differences of the surface tension of the components. A phase‐in‐phase structure was observed by microscopic study (AFM) in the ternary polyamide 6/polyamide 66/elastomer blends with maleic anhydride grafted ethene‐octene copolymer, and a “quasi” phase‐in‐phase structure in blends with maleic anhydride grafted ethene‐propene‐diene copolymer as the elastomer phase. An incorporation of polyamide inside of the elastomer particles was observed in the first case due to the difunctionality of polyamide 66. This type of morphology causes an increased elongation at break and toughness of these blends. In comparison to the binary polyamide based blends the ternary blends show an increased elastic modulus, elongation at break and yield stress as well as a high impact strength at low temperatures up to ?20 °C. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
采用磨盘形力化学反应器,在室温下制备了PA6/PP超细混合粉体,与SBS共混制得PA6/PP/SBS共混物,测定了材料的力学性能并用TEM研究了材料在不同加工温度下相结构的变化.结果表明,通过固相力化学粉碎制备的PA6/PP混合微粉,改善了PA6与PP和SBS的相容性,促进了PA6及PP的分散和与SBS的相界面结合.在微粉填充量为4%~8%(质量分数)时,材料的拉伸强度大幅度提高,扯断伸长率保持不变.加工温度变化引起材料相结构的变化对材料性能产生显著影响.在PP熔融温度下加工,PP粒子产生粘连形成链状结构,可提高材料的力学性能.  相似文献   

13.
The effects of maleated thermoplastic elastomer (TPEg) on morphological development of polypropylene (PP)/polyamide 6 (PA6) blends with a fixed PA6 content (30 wt %) were investigated. For purpose of comparison, nonmaleated thermoplastic elastomer (TPE) was also added to the above binary blends. A comparative study of FTIR spectroscopy in above both ternary blends confirmed the formation of in situ graft copolymer in the PP/PA6/TPEg blend. Dynamic mechanical analysis (DMA) indicated that un‐like TPE, the incorporation of TPEg remarkably affected both intensity and position of loss peaks of blend components. Scanning electron microscopy (SEM) demonstrated that PP/PA6/TPE blends still exhibited poor interfacial adhesion between the dispersed phase and matrix. However, the use of TPEg induced a finer dispersion and promoted interfacial adhesion. Transmission electron microscopy (TEM) for PP/PA6/TPEg blends showed that a core‐shell structure consisting of PA6 particles encapsulated by an interlayer was formed in PP matrix. With the concentration of TPEg increasing, the dispersed core‐shell particles morphology was found to transform from discrete acorn‐type particles to agglomerate with increasing degree of encapsulation. The modified Harkin's equation was applied to illustrate the evolution of morphology with TPEg concentration. “Droplet‐sandwiched experiments” further confirmed the encapsulation morphology in PP/PA6/TPEg blends. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1050–1061, 2006  相似文献   

14.
A multifunctional epoxy resin has been demonstrated to be an efficient reactive compatibilizer for the incompatible and immiscible blends of polyamide‐6 (PA 6) and polybutylene terephthalate (PBT). The torque measurements give indirect evidence that the reaction between PA and PBT with epoxy has an opportunity to produce an in situ formed copolymer, which can be as an effective compatibilizer to reduce and suppress the size of the disperse phase, and to greatly enhance mechanical properties of PA/PBT blends. The mechanical property improvement is more pronounced in the PA‐rich blends than that in the PBT‐rich blends. The fracture behavior of the blend with less than 0.3 phr compatibilizer is governed by a particle pullout mechanism, whereas shear yielding is dominant in the fracture behavior of the blend with more than 0.3 phr compatibilizer. As the melt and crystallization temperatures of the base polymers are so close, either PA or PBT can be regarded as a mutual nucleating agent to enhance the crystallization on the other component. The presence of compatibilizer and in situ formed copolymer in the compatibilized blends tends to interfere with the crystallization of the base polymers in various blends. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 23–33, 2000  相似文献   

15.
Blends of ethylene‐glycidyl methacrylate copolymer (PE‐GMA) and polyamide 6 (PA6) were prepared in a corotating twin screw extruder. Two processing temperatures were used in order to disperse PA6 in two forms: at high temperature in the molten state in molted PE‐GMA Matrix (emulsion type mixture) and at lower temperature as fillers in molted PEGMA matrix (suspension type mixture). Processed blends were analyzed by scanning electron microscopy and dynamic mechanical experiments to probe the reactivity in the extruder and the compatibilization phenomena. The dependence of the morphology and the rheological properties of PE‐GMA/PA6 blends on blend composition and screw rotational speed was also investigated and is discussed in the paper. The results show that dispersion of the two polymers in the molten state leads to a higher level of interfacial reaction. They also show that whatever the screw rotational speed and the temperature of extrusion are, the rate of interfacial reaction in PE‐GMA/PA6 blends is higher for 50/50 PE‐GMA/PA blends than for 70/30 PE‐GMA/PA blends. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Polyamide 66 (PA66) composites filled with clay and carbon fiber (CF) were prepared by twin‐screw extruder in order to study the influence of nanoparticle reinforcing effect on the mechanical behavior of the PA66 composites (CF/PA66). The mechanical property tests of the composites with and without clay were performed, and the fracture surface morphology was analyzed. The results show that the fracture surface area of the clay‐filled CF/PA66 composite was far smoother than that of the CF/PA66 composite, and there formed a tense interface on the CF surface after the addition of clay. The tensile and flexural strength of CF/PA66 composites with clay was improved. The impact strength decreased because of the high interfacial adhesion. In conclusion, the addition of clay favored the improvement of the higher interface strength and so had good effect on improving the tensile and flexural properties of the composites. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
This paper selected typical polar polymers which are polyvinylidene fluoride (PVDF) and polyamide (PA) to prepare PA/PVDF blend for energy storage material. Three kinds of PA (PA6, PA66 and PA11) with representative characters were chosen as the main research polymers for blending with PVDF. The electrical properties of three kinds of all-polymeric blends were tested and the microstructure was characterized by X-ray diffractometer (XRD), Fourier transform infrared instrument (FTIR), Scanning electron microscope (SEM) and Differential scanning calorimetry (DSC). Our finding suggests that the created high-ε polymeric blends represent a novel type of material that is easy to process. In addition, the dielectric constant and breakdown strength of PA/PVDFs are relatively high so that it can be applied to electronic components.  相似文献   

18.
Glycerol-plasticized starch (TPS)/polyamide 12 (PA12) blends were processed by melt mixing using two types of interfacial agent, i.e. diglycidyl ether of bisphenol A and a poly(ethylene-co-butyl acrylate-co-maleic anhydride) copolymer. Morphologies of the blends were tailored from the nature and amount of the interfacial agents. The average size of the dispersed phase was shown to decrease with the incorporation of the reactive agents and was proved to respect models, usually employed for conventional blends, for size predictions of the dispersed phase. By means of rheological experiments, it has been investigated whether the size reduction of the dispersed phase was coming from the compatibilization of the blend or from the viscosity changes due to chain extension in the matrix. The influence of the coupling agents on the viscoelastic behavior of the blend was characterized. Both interfacial agents led to increase the absolute complex viscosity but in the case of diepoxy reactive agent, the Newtonian flow behavior of complex viscosity totally disappeared in the low-frequency region. Mechanical properties of the TPS/PA12 blends were characterized and were proved to be strongly impacted by the use of interfacial agents. Elongation at break was enhanced as a consequence of a better adhesion between the matrix and the dispersed phase, whereas a decrease of the Young’s modulus was observed with increasing DGEBA content. Polyamide 12 crystallization in TPS/PA12 blends was found to be strongly dependent on DGEBA content while the introduction of maleic anhydride-grafted copolymer had no influence.  相似文献   

19.
The crystalline transition in water saturated and dry polyamide 6/66 copolymer (ratio 4:1 by mol) was investigated by means of temperature dependent wide angle X-ray diffraction (WAXD). The polyamide 6/66 copolymer (PA6/66) exhibits a poorly developed α-phase at room temperature after being cooled down from the melt. Uptake of water improves the crystalline structure by mobilizing the amorphous phase, thus facilitating chain relaxation in the crystalline phase. Upon heating, the effect of the glass transition on the change of the crystal lattice constants is seen. Further heating leads to a gradual crystalline transition from the α-phase to a pseudohexagonal phase. Different from the behavior in polyamide 6, this pseudohexagonal phase does not further transform to a high temperature α′-phase before melting. The delay of the crystalline transition in the water saturated PA6/66--as compared to the dry material can be understood as a result of the better ordered crystalline structure in it.  相似文献   

20.
PA6/PET共混体系的X射线衍射分析   总被引:2,自引:0,他引:2  
用宽角X射线衍射分析,考察尼龙6/PET共混体系的结晶态,表明在共混物中尼龙6和PET是各自结晶的,即晶相分离的。研究了结晶条件,组份比等对晶态结构的影响,发现共混体系相对结晶度低于纯组份的算术加和,说明共混体系的结晶相分离过程中,由于存在相互作用导致的干扰,使结晶度下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号