共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Yonglai Lu Guobao Zhang Meng Feng Ying Zhang Mingshu Yang Deyan Shen 《Journal of Polymer Science.Polymer Physics》2003,41(19):2313-2321
Hydrogen bonding in polyamide 66/clay nanocomposite (PA66CN) was first investigated with temperature Fourier transform infrared (FTIR), the results of which were compared with that of pristine polyamide 66 (PA66) with the same thermal history. FTIR spectra at room temperature revealed that there is essentially 100% hydrogen bonding in both PA66CN and PA66, and the difference in hydrogen‐bonding status between them is tiny. Additionally, DSC showed that the crystalline degrees and melting temperatures of PA66CN and PA66 prepared by melt quenching are similar. However, the changes of hydrogen bonding with temperature in PA66CN and PA66 are different. As the temperature rose, the hydrogen bonding in PA66CN attenuated and dissociated considerably at a smaller rate than PA66. According to transmission electron microscopic morphology of PA66CN, we analyzed the effect of nanodispersion clay layers on the motion of a polymer chain and the thermal expansion of crystalline lamella for interpreting the observed phenomenon. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2313–2321, 2003 相似文献
4.
In this study, a facile way has been proposed to prepare transparent, tough and flexible polyacrylamide (PAM) hydrogels which is composed of a dually crosslinked single network by chemical crosslinking of N,N'-methylenebisacrylamide (BIS) and physical crosslinking of hydrophilic hexagonal boron nitride (hBN) nanosheets. The resulting h-BN/PAM nanocomposite hydrogels are highly transparent, and exhibit significantly enhanced mechanical properties compared to the dark (GO)/PAM nanocomposite hydrogels or chemical crosslinking PAM hydrogels. Thus it opens up new opportunities for developing nextgeneration transparent, tough and flexible hydrogels that hold great promise in such important applications as light responsive soft robot and liquid microlenses. 相似文献
5.
Zehua Li Amanda K. Pearce Jianzhong Du Andrew P. Dove Rachel K. O'Reilly 《Journal of polymer science. Part A, Polymer chemistry》2023,61(1):44-55
Crystallization-driven self-assembly (CDSA) was employed for the preparation of monodisperse cationic cylindrical nanoparticles with controllable sizes, which were subsequently explored for their effect on antibacterial activity and the mechanical properties of nanocomposite hydrogels. Poly(ɛ-caprolactone)-block-poly(methyl methacrylate)-block-poly[2-(tert-butylamino) ethyl methacrylate] (PCL-b-PMMA-b-PTA) triblock copolymers were synthesized using combined ring-opening and RAFT polymerizations, and then self-assembled into polycationic cylindrical micelles with controllable lengths by epitaxial growth. The polycationic cylinders exhibited intrinsic cell-type-dependent antibacterial capabilities against gram-positive and gram-negative bacteria under physiological conditions, without quaternization or loading of any additional antibiotics. Furthermore, when the cylinders were combined into anionic alginate hydrogel networks, the mechanical response of the hydrogel composite was tunable and enhanced up to 51%, suggesting that cationic polymer fibers with controlled lengths are promising mimics of the fibrous structures in natural extracellular matrix to support scaffolds. Overall, this polymer fiber/hydrogel nanocomposite shows potential as an injectable antibacterial biomaterial, with possible application in implant materials as bacteriostatic agents or bactericides against various infections. 相似文献
6.
Ying Liu Chunhua Li Shuang Chen Ellen Wachtel Tadanori Koga Jonathan C. Sokolov Miriam. H. Rafailovich 《Journal of polymer science. Part A, Polymer chemistry》2009,47(24):2501-2508
Poly(ethylene-co-vinyl acetate)/clay nanocomposite fibers were fabricated using electrospinning. The fiber diameters were controlled by varying the polymer/chloroform concentration, which resulted in fibers with diameters ranging from 1 to 15 μm. The clay concentration was varied from 0.35 to 6.6 wt %. Scanning electron microscopy revealed that the fiber diameter increased with increasing clay concentration, whereas beading decreased. Transmission electron microscopy revealed a disruption of the spherulite structures by clay, which is consistent with heterogeneous nucleation. Shear modulus force microscopy indicated a reduction in melting point (Tm) with decreasing diameter for fibers thinner than 15 μm, which was confirmed by temperature dependent X-ray diffraction data. For fibers thinner than 8 μm, the presence of clay further enhanced the reduction of Tm. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2501–2508, 2009 相似文献
7.
Christos Pandis Anna Spanoudaki Apostolos Kyritsis Polycarpos Pissis Jos Carlos Rodríguez Hernndez Jose Luis Gmez Ribelles Manuel Monlen Pradas 《Journal of Polymer Science.Polymer Physics》2011,49(9):657-668
Water sorption in hydrogels based on nanocomposites of poly(2‐hydroxyethyl acrylate) (PHEA) and silica, prepared by simultaneous polymerization and sol‐gel process, were studied gravimetrically over wide ranges of silica content, both below and above the percolation threshold of about 15% wt for the formation of a continuous inorganic network interpenetrated with the organic network. Measurements were performed at room temperature from the vapor phase, both at equilibrium and dynamic, for selected values of water activity αw between 0 and 0.95, and from the liquid phase. In the nanocomposite hydrogels, the overall water uptake from the vapor phase is practically the same as in pure PHEA below the percolation threshold, whereas it is reduced above the percolation threshold, in particular at high αw values where swelling becomes significant. Water clustering sets in at around 14 vol % (10 wt %) of water independently of composition, whereas the mean value of water molecules in a cluster decreases at high silica contents. In immersion experiments water uptake decreases as silica content increases to the percolation threshold of about 15 wt % and is then almost independent of composition. A scheme is proposed, which explains these results in terms of the existence of micelles, where a number of hydrophilic hydroxy groups are linked together, and their disentaglement by immersion into water. Diffusion coefficients of water depend on water content and are reduced on addition of silica above the percolation threshold. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011 相似文献
8.
Y. Cohen O. Ramon I. J. Kopelman S. Mizrahi 《Journal of Polymer Science.Polymer Physics》1992,30(9):1055-1067
The physical and structural properties of acrylamide gels have been characterized by osmotic deswelling, mechanical compression, and x-ray scattering. These properties vary considerably with the concentration of the crosslinking agent bisacrylamide, at fixed total monomers concentration (10% wt/wt water). In particular, changes in the properties appear more prominent at a crosslinking level of about 5-6% (wt bisacrylamide/wt monomers). The compression modulus of as-prepared and swollen gels passes through a maximum at this level of crosslinking. The swelling pressure curves can be separated into osmotic and elastic contributions of the gel network. The elastic part exhibits similar behavior to the compression modulus. The scaling of the osmotic part with the gel concentration varies with the degree of crosslinking, changing from 2.33 to 3.09. This indicates that the solvent power of water decreases with increasing crosslinking level, towards Φ conditions. The scattering patterns from the gels have been analyzed as arising from additive contributions from a homogeneous gel matrix, and embedded heterogeneities having a higher crosslinking density. These heterogeneities become much more prominent at the same level of crosslinking about 5-6%. Hysteresis observed in the sorption/desorption behavior of polyacrylamide gel suggests that further irreversible structural changes may occur at water activities lower than probed by osmotic deswelling. © 1992 John Wiley & Sons, Inc. 相似文献
9.
10.
Hitesh Arora Rahul Malik Lilit Yeghiazarian Claude Cohen Ulrich Wiesner 《Journal of polymer science. Part A, Polymer chemistry》2009,47(19):5027-5033
Diverse motion mechanisms encountered in nature serve successfully as a guide for engineering efficient mobile devices used in cargo transport and force generation. We have previously demonstrated earthworm locomotion inspired directed motion and cargo transport using a pNIPA hydrogel‐based device. The motility mechanism involved sequential shrinking and swelling of segments of a long gel in a glass capillary, induced by volume phase transitions, through a simple temperature stimulus using peltier elements. The same effect is generated in the earthworm by flexing and stretching muscles along the body as it moves in its underground burrow. The shrinking segments move the body forward while the swollen segments anchor against the walls to prevent slippage. Here, we show an improved device, using the same working principle, made of super‐porous, mechanically robust organic‐inorganic hybrid hydrogels (also known as nanocomposite hydrogels), which show large volume phase transitions above 32 °C without requiring lengthy hydrolysis times. The gels demonstrate fast swelling kinetics with complete restoration of their initial size in short times, making the gels reusable for multiple cycles. This improved device, with its reusability, fast swelling kinetics, and efficient slip‐free motion, opens a variety of possibilities for applications in microfluidics, nanobiotechnology, small‐scale robotics, and micro electro mechanical systems. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5027–5033, 2009 相似文献
11.
Sankaraiah Subramani Jun‐Young Lee Sung‐Wook Choi Jung Hyun Kim 《Journal of Polymer Science.Polymer Physics》2007,45(19):2747-2761
Trifunctional organosilane‐modified clay was synthesized and used to prepare waterborne trifunctionalsilane‐terminated polyurethane (WSPU)/clay nanocomposite dispersions in this study. Qualitative evidence of the presence of chemically attached silane molecules on clay were confirmed by Fourier transform infrared spectroscopy. The grafted amount and the grafting yield were determined by thermogravimetric analysis and the obtained results were in good agreement with the cation exchange capacity of pristine clay. X‐ray diffraction and transmission electron microscopy examinations indicated that the clay platelets are mostly intercalated or partially exfoliated in the SPU matrix with a d‐spacing of ~2.50 nm. Clay does not influence the location and peak broadness of the glass transition temperature of soft segment as well as hard segment domains in the WSPU/clay films. WSPU/clay dispersion with higher clay content exhibits a marginal increase in the average particle size, but silane modified clay has a pronounced effect compared with Cloisite 20A‐based nanocomposites. In addition, the incorporation of organophilic clay can also enhance the thermal resistance and tensile properties of WSPUs dramatically through the reinforcing effect. The improvement in water and xylene resistance of the silane modified clay nanocomposites proved that trifunctional organosilane can be used as effective modifiers for clays. Storage stability results confirmed that the prepared nanocomposite dispersions were stable. This method provides an efficient way to incorporate silane modified clay in SPU matrix. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2747–2761, 2007 相似文献
12.
H. J. Liu J. J. Hwang Y. W. Chen‐Yang 《Journal of polymer science. Part A, Polymer chemistry》2002,40(22):3873-3882
Four quaternary alkyl ammonium salts were used in an organophilic procedure, performed on montmorillonite clay, and resulted in intercalation in dimethylformamide (DMF) or ethylene carbonate (EC)/propylene carbonate (PC) as a cosolvent between poly(vinylidene fluoride) (PVdF) and the organophilic clay. An examination using X‐ray diffraction revealed that PVdF entered galleries of montmorillonite clay, and it exhibited exfoliation and intercalation phenomena when it was analyzed with transmission electron microscopy. Gel PVdF nanocomposite electrolyte materials were successfully prepared by the addition of the appropriate percentages of DMF or PC/EC as a cosolvent, organophilic clay, and lithium perchlorate to PVdF. The maximum ionic conductivity was 1.03 × 10?2 S/cm, and the materials exhibited better film formation, solvent‐maintaining capability, and dimensional stability than electrolyte films without added organophilic clays. The results of cyclic voltammetry testing showed that the addition of the organophilic clays significantly enhanced the electrochemical stability of the polymer electrolyte system. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3873–3882, 2002 相似文献
13.
Roberta Sanna Davide Sanna Valeria Alzari Daniele Nuvoli Sergio Scognamillo Massimo Piccinini Massimo Lazzari Emilia Gioffredi Giulio Malucelli Alberto Mariani 《Journal of polymer science. Part A, Polymer chemistry》2012,50(19):4110-4118
Thermoresponsive poly(N‐vinylcaprolactam) nanocomposite hydrogels containing graphene were successfully prepared by frontal polymerization. High concentration of graphene (5.0 mg/mL) was obtained by direct graphite sonication in the self‐same liquid monomer, thus avoiding any chemical manipulation and obtaining “real” graphene as nanofiller instead of one of its more or less oxidized derivative, which is what generally reported in published reports. Furthermore, the corresponding nanocomposites were obtained without using any solvent to be eventually removed. The materials were fully characterized by RAMAN, SEM, and TEM, and their swelling behavior and rheological properties were investigated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
14.
Yang Liu Meifang Zhu Xiaoli Liu Y.M. Jiang Y. Ma Z.Y. Qin Dirk Kuckling Hans-Jurgen P. Adler 《Macromolecular Symposia》2007,254(1):353-360
Summary: A series of high clay content Clay-S/PNIPAAm nanocomposite hydrogels (S-N gels) has been successfully prepared by in situ polymerization. Their mechanical properties and phase transition behavior has been systematically investigated. It was found that S-N gels show high tensile strength, high elongation at break, fast stress relaxation, high hysteresis, and poor resilience, which may be ascribed to the hydrophilicity and flexibility of PNIPAAm chains. It was also concluded that the macroscopic phase transition behavior of S-N gels depend on the ratio of Segments II (thermosensitive segments) to Segments I (non-thermosensitive segments). 相似文献
15.
Sanju Francis D. Mitra B.R. Dhanawade Lalit Varshney Sunil Sabharwal 《Radiation Physics and Chemistry》2009,78(11):951-953
In this report a simple route for gamma radiation induced synthesis of superporous hydrogel (SPH) is described. Conventional SPH synthesis requires foaming and cross-linking reactions to take place simultaneously. However, in radiation synthesis it is difficult to introduce foaming during the cross-linking reactions. In order to overcome this limitation, the foaming and radiation cross-linking reactions were decoupled and carried out in two stages. The polyacrylamide SPH synthesized by this approach has very fast swelling kinetics compared to the non-porous hydrogel. 相似文献
16.
Jeng‐Yue Wu Tzong‐Ming Wu Wei‐Yan Chen Shih‐Jung Tsai Wen‐Faa Kuo Gwo‐Yang Chang 《Journal of Polymer Science.Polymer Physics》2005,43(22):3242-3254
X‐ray diffraction and differential scanning calorimeter (DSC) methods have been used to investigate the crystallization behavior and crystalline structure of hexamethylenediamine (HMDA)‐modified maleic‐anhydride‐grafted polypropylene/clay (PP‐g‐MA/clay) nanocomposites. These nanocomposites have been prepared by using HMDA to graft the PP‐g‐MA (designated as PP‐g‐HMA) and then mixing the PP‐g‐HMA polymer in hot xylene solution, with the organically modified montmorillonite. Both X‐ray diffraction data and transmission electron microscopy images of PP‐g‐HMA/clay nanocomposites indicate that most of the swellable silicate layers are exfoliated and randomly dispersed into PP‐g‐HMA matrix. DSC isothermal results revealed that introducing 5 wt % of clay into the PP‐g‐HMA structure causes strongly heterogeneous nucleation, which induced a change of the crystal growth process from a three‐dimensional crystal growth to a two‐dimensional spherulitic growth. Mechanical properties of PP‐g‐HMA/clay nanocomposites performed by dynamic mechanical analysis show significant improvements in the storage modulus when compared to neat PP‐g‐HMA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3242–3254, 2005 相似文献
17.
Jinghong Ma Li Zhang Bing Fan Yajing Xu Borun Liang 《Journal of Polymer Science.Polymer Physics》2008,46(15):1546-1555
A novel semi‐IPN nanocomposite hydrogel (CMC/PNIPA/Clay hydrogel) based on linear sodium carboxymethylcellulose (CMC) and poly(N‐isopropylacrylamide) (PNIPA) crosslinked by inorganic clay was prepared. The structure and morphology of these hydrogels were investigated and their swelling and deswelling kinetics were studied in detail. TEM images showed that the clay was substantially exfoliated to form nano‐dimension platelets dispersed homogeneously in the hydrogels and acted as a multifunctional crosslinker. The CMC/PNIPA/Clay hydrogels swell faster than the corresponding PNIPA/Clay hydrogels at pH 7.4, whereas they swell slower than the PNIPA/Clay hydrogels at pH 1.2. The CMC/PNIPA/Clay nanocomposite hydrogels showed much higher deswelling rates, which was ascribed to more passway formed in these hydrogels for water to diffuse in and out. The deswelling process of the hydrogels could be approximately described by the first‐order kinetic equation and the deswelling rate decreased with increasing clay content. The mechanical properties of the CMC/PNIPA/Clay nanocomposite hydrogels were analyzed based on the theory of rubber elasticity. It was found that with increasing clay content, the effective crosslink chain density, ve, increased whereas the molecular weight of the chains between crosslinks Mc decreased. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1546–1555, 2008 相似文献
18.
Jiann‐Wen Huang 《Journal of Polymer Science.Polymer Physics》2008,46(6):564-576
Melting behaviors and nonisothermal crystallization of poly(butylene terephthalate)/poly(ethylene‐co‐glycidyl methacrylate) (PBT/PEGMA), PBT/commercial modified montmorillonite clays (PBT/Clay), and PBT/exfoliated silicates (PBT/PEGMA/Clay) nanocomposites were studied by wide‐angle X‐ray diffraction and differential scanning calorimeter. PEGMA is used as a compatibilizer. For both isothermally and nonisothermally crystallized samples, PEGMA facilitates the recrystallization of PBT during the heating scans, and leads to a less degree of perfection of the crystals. However, the clay hinders the recrystallization growth during heating scans, and increases perfection of the crystals. Nonisothermal crystallization kinetics was described by kinetic models and undercooling was taken into account. The PEGMA would lead to an increase of the blend viscosity, rendering the chains less mobile and lower the crystallizability of PBT in PBT/PEGMA. The well‐dispersed exfoliated silicates in PBT/PEGMA/Clay cause a large number of nuclei to precede crystallization. The fold surface free energy (σe) and activation energy also supported the interpretation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 564–576, 2008 相似文献
19.
Favero LB Giuliano BM Melandri S Maris A Caminati W 《Chemistry (Weinheim an der Bergstrasse, Germany)》2007,13(20):5833-5837
The millimeter-wave absorption and Fourier transform microwave spectra of five isotopologues of the 1:1 adduct of dimethoxymethane-water have been measured in supersonic expansions. Each rotational transition appears as a quintuplet, due to the internal rotation of the two methyl groups, which are nonequivalent in the adduct. The water moiety, linked asymmetrically to dimethoxymethane, behaves as a proton donor to one of its oxygen atoms and interferes with the internal rotation of the farther methyl group through a C...HO interaction. From the analysis of the observed splittings, the V(3) barriers to the internal rotation of the two methyl groups have been determined to be 6.83(8) and 6.19(8) kJ mol(-1). The hydrogen bond structural parameters have been determined, the O...HO and C...HO distances being 1.93(1) and 2.78(4) A, respectively. 相似文献
20.
To investigate the dispersion and nanofillers' interaction of rod‐like silicates (attapulgite, ATT) in the polymethylmethacrylate (PMMA) matrix, a novel in situ modification of ATT by toluene‐2,4‐di‐isocyanate (TDI) using mechanical mixing was exploited, which resulted in homogeneous dispersion and rod‐like texture of ATT nanorods. As a consequence, organo‐modified ATT/PMMA nanocomposites were prepared, which provided prominent improvements in strength, toughness, and thermal stability. High grafting efficiency of TDI on ATT surface was confirmed by FTIR spectra and SEM observations. The uniform dispersion of in situ TDI modified ATT nanorods in the PMMA which was clearly visible in the TEM micrographs, influenced the mechanical and thermal properties of the nanocomposites. The fibrous nanoparticles significantly confined the segmental motion, causing a 13.20°C increase in the glass transition temperature of 2 wt% in situ TDI modified ATT/PMMA nanocomposites. But at higher loadings little or no differences were observed for the reinforcement benefits provided by the in situ TDI modified ATT clay. By comparison, pre‐treated ATT clay severely fractured during mechanical mixing and showed little reinforcement benefits. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献