首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of water‐soluble semirigid thermoresponsive polymers with well‐defined molecular weights based on mesogen‐jacketed liquid crystal polymers (MJLCPs), poly[bis(N‐hydroxyisopropyl pyrrolidone) 2‐vinylterephthalate] (PHIPPVTA) have been synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization. Dynamic light scattering (DLS) revealed that the novel monomer and polymers have thermoresponsive properties with cloud point in the range between 10 and 90 °C. The cloud point was increased by 56.2 °C when the polymer molecular weight increased from 0.47 × 104 g mol?1 to 3.69 × 104 g mol?1. In addition, the cloud point of PHIPPVTA was decreased by 18.8 °C with the increase of polymer concentration from 5 to 10 mg mL?1. A slight increase (0.1–3.5 °C) of cloud point has been observed after knocking off the end‐groups of PHIPPVTA. Moreover, the cloud point of polymer increased with increasing of its molecular weight with or without the trithiocarbonate end‐groups, which showed the opposite trend comparing with other thermoresponsive polymers with flexible backbones. These polymers show a dramatic solvent isotopic effect that the cloud point in D2O was lower than in H2O. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
A series of novel branched polythiophene derivatives bearing different densities of vinylene‐bridges as linking chains were synthesized by a general synthetic strategy. The organic field‐effect transistors, which were fabricated by spin‐coating the polymer solutions onto octadecyltrichlorosilane‐modified SiO2/Si substrates with top‐contact configuration, afforded a high mobility of 8.0 × 10?3 cm2 V?1 s?1 with an on/off ratio greater than 104 and a threshold voltage of about ?3 V in saturation regime. The devices based on these polymers possessed better performance than those of polymers without conjugated bridges and polymers with longer conjugated bridges. These results demonstrated that the combination of conjugated polythiophene backbones and vinylene‐bridges would improve the carrier mobility. As an emerging class of conjugated materials, polymers with vinylene‐bridges as linking chains would open up new opportunities in organic electronics, and their applications in organic electronics are promising. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1381–1392, 2009  相似文献   

3.
A series of new phenothiazine‐based donor–acceptor copolymers, P1 and P2, were synthesized via a Suzuki coupling reaction. The weight‐averaged molecular weights (Mw) of P1 and P2 were found to be 16,700 and 16,100, with polydispersity indices of 1.74 and 1.39, respectively. The UV–visible absorption spectra of the polymer thin films contained three strong absorption bands in the ranges 318–320 nm, 430–436 nm, and 527–568 nm. The absorption peaks at 320 and 430 nm originated mainly from the phenothiazine‐based monomer units, and the longer wavelength absorption band at 527–568 nm was attributed to the increased effective conjugation length of the polymer backbones. Solution‐processed field‐effect transistors fabricated with these polymers exhibited p‐type organic thin film transistor characteristics. The field‐effect mobilities of P1 and P2 were measured to be 1.0 × 10?4 and 7.5 × 10?5 cm2 V?1 s?1, respectively, with on/off ratios in the order of 104 for all polymers. A photovoltaic device in which a P2/PC71BM (1/3) blend film was used as the active layer exhibited an open‐circuit voltage (VOC) of 0.70 V, a short‐circuit current (JSC) of 6.79 mA cm(2, a fill factor of 0.39, and a power conversion efficiency of 1.86% under AM 1.5 G (100 mW cm?2) illumination. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
Poly((2‐Alkylbenzo[1,2,3]triazole‐4,7‐diyl)vinylene)s (pBTzVs) synthesized by Stille coupling show different absorption spectra, solid‐state morphology, and photovoltaic performance, depending on straight‐chain versus branched‐chain (pBTzV12 and pBTzV20) pendant substitution. Periodic boundary condition density functional computations show limited alkyl pendant effects on isolated chain electronic properties; however, pendants could influence polymer backbone conjugative planarity and polymer solid film packing. The polymers are electronically ambipolar, with best performance by pBTzV12 with hole and electron transport mobilities of 4.86 × 10?6 and 1.96 × 10?6 cm2 V?1 s?1, respectively. pBTzV12 gives a smooth film morphology, whereas pBTzV20 gives a very different fibrillar morphology. For ITO/PEDOT:PSS/(1:1 w/w polymer:PC71BM)/LiF/Al devices, pBTzV12 gives power conversion efficiency (PCE) up to 2.87%, and pBTzV20 gives up to PCE = 1.40%; both have open‐circuit voltages of VOC = 0.6–0.7 V. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1539–1545  相似文献   

5.
A series of conjugated hyperbranched polymers, hyperbranched copolymers, and linear polymers containing 2‐pyran‐4‐ylidenemalononitrile (acceptor) and triphenylamine/fluorene (donor) units were synthesized and characterized by FTIR, 1H NMR, thermogravimetric analyses, differential scanning calorimetry, gel permeation chromatography, UV–visible, photoluminescence, and cyclic voltammetry measurements. All the polymers show red‐light emission in the range of 566–656 nm both in solution and in solid state. The quantum efficiency of the polymers was in the range of 56–82%. Among the six polymers synthesized, only polymers containing fluorene units show Tg and polymers based on triphenylamine not exhibit Tg. The band gap of these polymers were found to be reasonably low; hyperbranched copolymer containing fluorene unit shows lowest band gap of 2.18 eV due to the stabilization of LUMO energy level by the electron withdrawing ? CN groups. The thermal and solubility behavior of the polymers were found to be good. All the EL spectra of the devices (indium‐tin oxide/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)/polymer/2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline/tris(8‐hydroxyquinoline)aluminum)/LiF/Al) show red‐light emission, and the device fabricated with P3 and P4 shows maximum luminance and luminous efficiency of 4104 cd m?2 and 0.55 cd Å?1 and 3696 cd m?2 and 0.47 cd Å?1, respectively, indicates that they had the best carrier balance. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
A novel, easy, and cost‐effective synthetic procedure is reported for the production of very highly regioregular poly[3‐(4‐alkoxyphenyl)thiophene]s by means of oxidative coupling. Four copper complexes were synthesized and used as catalysts to obtain polymers with higher regioregularity compared to the previous oxidative coupling methodologies reported in the literature and similar to that obtained by McCullough and Rieke methods in the synthesis of poly‐3‐alkylthiophenes. The regioregularity of the synthesized polymers was investigated by UV–Visible characterization on polymer thin films and 1H NMR analysis. The remarkable potentialities of these polymers have emerged from field‐effect transistor mobility measurements operated on devices with bottom‐contact configuration and hexamethyldisilazane‐treated SiO2 gate dielectric, showing a well‐defined p‐type field‐effect response and maximum mobility values in air higher than 10?4 cm2 V?1 s?1. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4351–4360  相似文献   

7.
Two donor–acceptor conjugated polymers, PTSSO‐TT and PTSSO‐BDT, composed of acenaphtho[1,2‐c]thiophene ‐ S,S‐dioxide (TSSO) as a new electron acceptor and thienothiophene (TT) or benzo[1,2‐b:4,5‐b']dithiophene (BDT) as electron donors, were synthesized with Stille cross‐coupling reactions. The number‐averaged molecular weights (Mn) of PTSSO‐TT and PTSSO‐BDT were found to be 15100 and 26000 Da, with dispersity of 1.8 and 2.4, respectively. The band‐gap energies of PTSSO‐TT and PTSSO‐BDT are 1.56 and 1.59 eV, respectively. The HOMO levels of PTSSO‐TT and PTSSO‐BDT are ?5.4 and ?5.5 eV, respectively. These results indicate that the inclusion of TSSO accepting units into polymers is a very effective method for lowering their HOMO energy levels. The field‐effect mobilities of PTSSO‐TT and PTSSO‐BDT were determined to be 1.5 × 10?3 and 4.5 × 10?4 cm2 V?1 s?1, respectively. A polymer solar cell device prepared with PTSSO‐TT as the active layer was found to exhibit a power conversion efficiency (PCE) of 3.79% with an open circuit voltage of 0.71 V under AM 1.5 G (100 mW cm?2) conditions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 498–506  相似文献   

8.
Methoxy‐substituted poly(triphenylamine)s, poly‐4‐methoxytriphenylamine ( PMOTPA ), and poly‐N,N‐bis(4‐methoxyphenyl)‐N′,N′‐diphenyl‐p‐phenylenediamine ( PMOPD ), were synthesized from the nickel‐catalyzed Yamamoto and oxidative coupling reaction with FeCl3. All synthesized polymers could be well characterized by 1H and 13C NMR spectroscopy. These polymers possess good solubility in common organic solvent, thermal stability with relatively high glass‐transition temperatures (Tgs) in the range of 152–273 °C, 10% weight‐loss temperature in excess of 480 °C, and char yield at 800 °C higher than 79% under a nitrogen atmosphere. They were amorphous and showed bluish green light (430–487 nm) fluorescence with quantum efficiency up to 45–62% in NMP solution. The hole‐transporting and electrochromic properties are examined by electrochemical and spectroelectrochemical methods. All polymers exhibited reversible oxidation redox peaks and Eonset around 0.44–0.69 V versus Ag/AgCl and electrochromic characteristics with a color change under various applied potentials. The series of PMOTPA and PMOPD also showed p‐type characteristics, and the estimated hole mobility of O ‐ PMOTPA and Y ‐ PMOPD were up to 1.5 × 10?4 and 5.6 × 10?5 cm2 V?1 s?1, respectively. The FET results indicate that the molecular weight, annealing temperature, and polymer structure could crucially affect the charge transporting ability. This study suggests that triphenylamine‐containing conjugated polymer is a multifunctional material for various optoelectronic device applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4037–4050, 2009  相似文献   

9.
Redox‐active 6‐oxoverdazyl polymers were synthesized via ring‐opening metathesis polymerization (ROMP) and their solution, bulk, and thin‐film properties investigated. Detailed studies of the ROMP method employed confirmed that stable radical polymers with controlled molecular weights and narrow molecular weight distributions (Ð < 1.2) were produced. Thermal gravimetric analysis of a representative example of the title polymers demonstrated stability up to 190 °C, while differential scanning calorimetry studies revealed a glass transition temperature of 152 °C. Comparison of the spectra of 6‐oxoverdazyl monomer 12 and polymer 13 , including FT‐IR, UV‐vis absorption, and electron paramagnetic resonance spectroscopy, was used to confirm the tolerance of the ROMP mechanism for the 6‐oxoverdazyl radical both qualitatively and quantitatively. Cyclic voltammetry studies demonstrated the ambipolar redox properties of polymer 13 (E1/2,ox = 0.25 and E1/2,red = ?1.35 V relative to ferrocene/ferrocenium), which were consistent with those of monomer 12 . The charge transport properties of thin films of polymer 13 were studied before and after a potential of 5 V was applied, revealing a drastic drop in the resistivity from 106?1010 Ω m or more to 1.7 × 104 Ω m and suggesting the potential usefulness of polymer 13 in bistable electronics. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1803–1813  相似文献   

10.
It is challenging to realize the near‐infrared (NIR) emission with large brightness and sharp spectra from the conjugated polymers. In this study, we demonstrate the strategy for receiving strong and pure NIR emission from polymeric materials using organoboron complexes and the modification after polymerization. A series of NIR emissive conjugated polymers with boron di(iso)indomethenes (BODINs) and fluorene or bithiophene were synthesized by Suzuki–Miyaura coupling reaction. The obtained polymers exhibited high emissions in the range from deep‐red to NIR region (quantum yields: ?PL = 0.40–0.79, full width at half maximum height: Δλ1/2 = 660–940 cm?1, emission maxima: λPL = 686–714 nm). Next, the demethylation of the BODIN‐based polymer with o‐methoxyphenyl groups was carried out. The transformation of the polymer structure quantitatively proceeded via efficient intramolecular crosslinking through the intermediary of the boron atom. Finally, the resulting polymer showed both drastically larger red‐shifted and sharper photoluminescence spectrum than that of the parent polymer with deep‐red emission (?PL = 0.37, Δλ1/2 = 460 cm?1, λPL = 758 nm). © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

11.
Two donor–acceptor (D‐A) conjugated polymers, PQx and PphQx, composed of alkylthienyl‐substituted benzo[1,2‐b:4,5‐b']dithiophene (BDTT) as the electron donor and the new electron acceptors quinoxaline (Qx) or phenanthrenequinoxaline (phQx), were synthesized with Stille cross‐coupling reactions. The number‐averaged molecular weights (Mn) of PQx and PphQx were found to be 25.1 and 23.2 kDa, respectively, with a dispersity of 2.6. The band‐gap energies of PQx and PphQx are 1.82 and 1.75 eV, respectively. These results indicate that, because phQx units have highly planar structures, their inclusion in D‐A polymers will be a very effective method for increasing the polymers' effective conjugation lengths. The hole mobilities of PQx and PphQx were determined to be 5.0 × 10?5 and 2.2 × 10?4 cm2 V?1 s?1, respectively. A polymer solar cell device prepared with PphQx as the active layer was found to exhibit a power conversion efficiency (PCE) of 5.03%; thus, the introduction of phQx units enhanced both the short circuit current density and PCE of the device. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2804–2810  相似文献   

12.
Three main chain thermotropic liquid crystalline (LC) azobenzene polymers were synthesized using the azobenzene twin molecule (P4P) having the structure Phenylazobenzene‐tetraethyleneglycol‐Phenylazobenzene as the AA monomer and diols like diethylene glycol, tetraethylene glycol (TEG), and hexaethylene glycol as the BB comonomer. Terminal ? C(O)OMe units on P4P facilitated transesterification with diols to form polyesters. All polymers exhibited stable smectic mesophases. One of the polymers, Poly(P4PTEG) was chosen to prepare composite polymer electrolytes with LiCF3SO3 and ionic conductivity was measured by ac impedance spectroscopy. The polymer/0.3 Li salt complex exhibited a maximum ionic conductivity in the range of 10?5 S cm?1 at room temperature (25 °C), which increased to 10?4 S cm?1 above 65 °C. The temperature dependence of ionic conductivity was compared with the phase transitions occurring in the sample and it was observed that the glass transition had a higher influence on the ionic conductivity compared to the ordered LC phase. Reversible ionic conductivity switching was observed upon irradiation of the polymer/0.3 Li salt complex with alternate UV and visible irradiation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 629–641  相似文献   

13.
Three new types of hyperbranched photoactive liquid crystalline siloxane polymers containing azo moieties were synthesized using click chemistry methodology. The polymers were soluble in most of the polar solvents like chloroform, tetrahydrofuran, dimethylformamide, dimethyl sulphoxide and dichloromethane. The molecular weights of the polymers were in the range of 9000–12,000 g mol?1. The trans‐cis photoisomerization of the polymer were studied both under UV radiation and dark. The isomerization rate constants were found to be in the range of 0.7–1.4 × 10?2 sec?1 and 7.0 × ?2.5 × 10?5 sec?1. The thermotropic behavior of the polymers was studied by using polarizing optical microscopy and differential scanning calorimetry, respectively. The polymers P1 and P2 showed liquid crystalline texture characteristic of nematic phase. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Two furan‐flanked polymers poly{3,6‐difuran‐2‐yl‐2,5‐di(2‐octyldodecyl)‐pyrrolo[3,4‐c]pyrrole‐1,4‐dione‐alt‐thienylenevinylene} (PDVFs), with a highly π‐extended diketopyrrolopyrrole backbone, are developed for solution‐processed high‐performance polymer field‐effect transistors (FETs). Atomic force microscopy and grazing incidence X‐ray scattering analyses indicate that PDVF‐8 and PDVF‐10 films exhibit a similar nodular morphology with the ultrasmall lamellar distances of 16.84 and 18.98 Å, respectively. When compared with the reported polymers with the same alkyl substitutes, this is the smallest d‐spacing value observed to date. This closed lamellar crystallinity facilitates charge carrier transport. Therefore, polymer thin‐film transistors fabricated from as‐spun PDVF‐8 films exhibit a high hole mobility exceeding 1.0 cm2 V?1 s?1 with a current on/off ratio above 106. After annealing treatment at 100 °C in air, the highest hole mobility of PDVF‐8‐based FETs was significantly improved to 1.90 cm2 V?1 s?1, which is among the highest values of the reported FET devices fabricated from polymer thin films based on this mild annealing temperature. In contrast, long alkyl‐substituted PDVF‐10 exhibited a relatively low hole mobility of 1.65 cm2 V?1 s?1 mainly resulting from low molecular weight. This work demonstrated that PDVFs would be promising semiconductors for developing cost‐effective and large‐scale production of flexible organic electronics. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1970–1977  相似文献   

15.
A novel conjugated polymer, poly(thienylene‐vinylene‐thienylene) with cyano substituent ( CN‐PTVT ) was synthesized via Stille coupling for the application in air stable field‐effect transistor and polymer solar cell. The polymer was characterized by 1H NMR, elemental analysis, UV‐vis absorption and photoluminescence spectroscopy, TGA, cyclic voltammetry and XRD analysis. CN‐PTVT exhibits a good thermal stability with 5% weight loss at 306 °C. The FET hole mobility of the polymer reached 5.9 × 10?3 cm2 V?1 s?1 with Ion/Ioff ratio of 4.9 × 104, which is one of the highest performance among the air‐stable amorphous polymers. The polymer solar cell based on CN‐PTVT as donor and PCBM as acceptor shows a relatively high open‐circuit voltage of 0.82 V and a power conversion efficiency of 0.3% under the illumination of AM1.5, 100 mW/cm2. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4028–4036, 2009  相似文献   

16.
A series of low bandgap conjugated polymers consisting of benzothiadiazole alternating with dithienothiophene (DTT) or dithienopyrrole (DTP) unit with or without 3‐alkylthiophene bridge have been synthesized. Effect of the fused rings and 3‐alkylthiophene bridge on the thermal, optical, electrochemical, charge transport, and photovoltaic properties of these polymers have been investigated. These polymers show broad absorption extending from 300 to 1000 nm with optical bandgaps as low as 1.2 eV; the details of which can be varied either by incorporating 3‐alkylthiophene bridge or by replacing DTT with DTP. The LUMO levels (?2.9 to ?3.3 eV) are essentially unaffected by the specific choice of donor moiety, whereas the HOMO levels (?4.6 to ?5.6 eV) are more sensitive to the choice of donor. The DTT and DTP polymers with 3‐alkylthiophene bridge were found to exhibit hole mobilities of 8 × 10?5 and 3 × 10?2 cm2 V?1 s?1, respectively, in top‐contact organic field‐effect transistors. Power conversion efficiencies in the range 0.17–0.43% were obtained under simulated AM 1.5, 100 mW cm?2 irradiation for polymer solar cells using the DTT and DTP‐based polymers with 3‐alkylthiophene bridge as donor and fullerene derivatives as acceptor. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5498–5508, 2009  相似文献   

17.
Two neutral precursor conjugated copolymers based 2,7‐diethynylfluorene and 3,6‐diethynylcarbazole units in the main chain ( PFC and PF2C ) were prepared by Hay coupling polymerization. Their cationic copolymers ( CPFC and CPF2C ) were prepared by the methylation of their diethylpropylamino groups with CH3I. For comparison, neutral conjugated homopolymers of 2,7‐diethynylfluorene ( PF ), 3,6‐diethynylcarbazole units ( PC ) and their cationic polymers ( CPF and CPC ) were also prepared with the same method. A comparative study on the optical properties of cationic polymers CPFC and CPF2C in DMF and DMF/H2O showed that they underwent water‐induced aggregation. The spectral behaviors of CPFC and CPF2C with calf thymus DNA showed that a distinct fluorescent quenching took place with minute addition of CT DNA (3.3 × 10?13 M). The results showed that the polymers would be promising biosensor materials for sensitive detection of DNA. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4168–4177, 2010  相似文献   

18.
Two alternating poly[3‐(hex‐1‐enyl)thiophene‐co‐thiophene]s, Pa (with 77% trans‐isomer and 23% cis‐isomer) and Pb (with 100% trans‐isomer), were synthesized by the coupling of 2,5‐dibromo‐3‐hex‐1‐enyl‐thiophene to 2,5‐bis(tributylstannyl)thiophene via a Stille reaction and compared with poly(3‐hexylthiophene‐co‐thiophene) ( P1 ) to study the effect of changing the carbon(α)–carbon(β) single bond into a carbon–carbon double bond on the properties of the polymers. From P1 to Pb and to Pa , the ultraviolet–visible absorption peaks of the polymers were slightly redshifted, and their electrochemical bandgaps decreased by 0.05–0.1 eV. X‐ray diffraction analysis indicated that Pa had a better lamellar structure than Pb . The hole mobilities of the three polymers, determined with the space‐charge‐limited current model, were 5.23 × 10?6 ( P1 ), 2.34 × 10?4 ( Pb ), and 7.02 × 10?4 cm2/V s ( Pa ). The power conversion efficiencies (PCEs) of polymer solar cells based on the three polymers were 0.87 ( P1 ), 1.16 ( Pb ), and 1.70% ( Pa ). The increase in the hole mobility and PCE revealed the important effect of changing the carbon(α)–carbon(β) single bond into a carbon–carbon double bond on the properties of polythiophene derivatives containing 3‐alkylthiophene. The strategy used in this work enlarges the thinking to obtain novel, efficient donor polymers for optoelectronic applications. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 629–638, 2007  相似文献   

19.
Two well‐defined alternating π‐conjugated polymers containing a soluble electroactive benzo[1,2‐b:4,5‐b′]difuran (BDF) chromophore, poly(BDF‐(9‐phenylcarbazole)) (PBDFC), and poly(BDF‐benzothiadiazole) (PBDFBTD) were synthesized via Sonogashira copolymerizations. Their optical, electrochemical, and field‐effect charge transport properties were characterized and compared with those of the corresponding homopolymer PBDF and random copolymers of the same overall composition. All these polymers cover broad optical absorption ranges from 250 to 750 nm with narrow optical band gaps of 1.78–2.35 eV. Both PBDF and PBDFBTD show ambipolar redox properties with HOMO levels of ?5.38 and ?5.09 eV, respectively. The field‐effect mobility of holes varies from 2.9 × 10?8 cm2 V?1 s?1 in PBDF to 1.0 × 10?5 cm2 V?1 s?1 in PBDFBTD. Bulk heterojunction solar cell devices were fabricated using the polymers as the electron donor and [6,6]‐phenyl‐C61‐butyric acid methyl ester as the electron acceptor, leading to power conversion efficiencies of 0.24–0.57% under air mass 1.5 illumination (100 mW cm?2). These results indicate that their band gaps, molecular electronic energy levels, charge mobilities, and molecular weights are readily tuned by copolymerizing the BDF core with different π‐conjugated units. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
The reactivity of square planar palladium(II) and platinum(II) complexes in trans or cis configuration, namely trans or cis‐[dichlorobis(tributylphosphine)platinum(II)] and trans‐[dichlorobis(tributylphosphine)palladium(II)] with 1,1′‐bis(ethynyl) 4,4′‐biphenyl, DEBP, leading to π‐conjugated organometallic oligomeric and polymeric metallaynes, was investigated by a systematic variation of the reaction conditions. The formation of polymers and oligomers with defined chain length [? M(PBu3)2 (C?C? C6H4? C6H4? C?C? )]n (n = 3–10 for the oligomers, n = 20–50 for the polymers) depends on the configuration of the precursor Pt(II) and Pd(II) complexes, the presence/absence of the catalyst CuI, and the reaction time. A series of model reactions monitored by XPS, GPC, and NMR 31P spectroscopy showed the route to modulate the chain growth. As expected, the nature of the transition metal (Pt or Pd) and the molecular weight of the polymers markedly influence the photophysical characteristics of the polymetallaynes, such as optical absorption and emission behavior. Polymetallaynes with nanostructured morphology could be obtained by a simple casting procedure of polymer solutions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3311–3329, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号