首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simple and highly sensitive voltammetric method was developed for the determination of benazepril (I) and ramipril (II). The compounds were treated with nitrous acid, and the cathodic current produced by the resulting nitroso derivatives was measured. The voltammetric behavior was studied by adopting direct current (DCt), differential pulse (DPP), and alternating current (ACt) polarography. Both compounds produced well-defined, diffusion-controlled cathodic waves over the whole pH range in Britton-Robinson buffers (BRb). At pH 3 and 5, the values of diffusion-current constants (Id), were 5.90 +/- 0.40 and 6.66 +/- 0.61 for I and II, respectively. The current concentration plots for I were rectilinear over the range of 1.5-40 and 0.1-30 microg/mL in the DCt and DPP modes, respectively; for II, the range was 2-30 and 0.1-20 microg/mL in the DCt and DPP modes, respectively. The minimum detectabilities (S/N = 2) were 0.015 microg/mL (about 3.25 x 10(-8)M) and 0.012 microg/mL (about 2.88 x 10(-8)M) for I and II, respectively, adopting the DPP mode. Results obtained for the proposed method when applied to the determination of both compounds in dosage forms were in good agreement with those obtained using reference methods. Hydrochlorthiazide, which is frequently co-formulated with these drugs, did not interfere with the assay. The method was also applied to the determination of benazepril in spiked human urine and plasma. The percentage recoveries adopting the DPP mode were 96.2 +/- 1.21 and 95.7 +/- 1.61, respectively.  相似文献   

2.
A rapid, simple, and highly sensitive second derivative synchronous fluorometric method has been developed for the simultaneous determination of metoclopramide (MT) and pyridoxine (PY) in a binary mixture. The method is based on measurement of the native fluorescence of these drugs at delta lambda = 80 nm in methanol. The different experimental parameters affecting the native fluorescence of the drugs were carefully studied and optimized. The fluorescence-concentration plots were rectilinear over the ranges of 0.02-0.4 and 0.1-2 microg/mL for MT and PY, respectively. The limits of detection were 0.003 and 0.007 microg/mL and the limits of quantification were 0.008 and 0.02 microg/mL for MT and PY, respectively. The proposed method was successfully applied to the determination of MT and PY in synthetic mixtures and in commercial syrup. The results were in good agreement with those obtained with a reported method. The high sensitivity attained by the proposed method allowed the determination of MT in spiked and real human plasma samples. The mean percent recoveries of MT from spiked and real human plasma (n = 3) were 93.72 +/- 3.15 and 89.72 +/- 2.19 respectively.  相似文献   

3.
Three new, different, simple, sensitive, and accurate methods were developed for quantitative determination of nifuroxazide (I) and drotaverine hydrochloride (II) in a binary mixture. The first method was spectrophotometry, which allowed determination of I in the presence of II using a zero-order spectrum with an analytically useful maximum at 364.5 nm that obeyed Beer's law over a concentration range of 2-10 microg/mL with mean percentage recovery of 100.08 +/- 0.61. Determination of II in presence of I was obtained by second derivative spectrophotometry at 243.6 nm, which obeyed Beer's law over a concentration range of 2-10 microg/mL with mean recovery of 99.82 +/- 1.46%. The second method was spectrodensitometry, with which both drugs were separated on a silica gel plate using chloroform-acetone-methanol-glacial acetic acid (6 + 3 + 0.9 + 0.1) as the mobile phase and ultraviolet (UV) detection at 365 nm over a concentration range of 0.2-1 microg/band for both drugs, with mean recoveries of 99.99 +/- 0.15 and 100.00 +/- 0.34% for I and II, respectively. The third method was reversed-phase liquid chromatography using acetonitrile-water (40 + 60, v/v; adjusted to pH 2.55 with orthophosphoric acid) as the mobile phase and pentoxifylline as the internal standard at a flow rate of 1 mU/min with UV detection at 285 nm at ambient temperature over a concentration range of 2-10 microg/mL for both drugs, with mean recoveries of 100.24 +/- 1.51 and 100.08 +/- 0.78% for I and II, respectively. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulations containing the above drugs with no interference from other dosage form additives. The validity of the suggested procedures was further assessed by applying the standard addition technique which was found to be satisfactory, and the percentage recoveries obtained were in accordance with those given by the EVA Pharma reference spectrophotometric method.  相似文献   

4.
A simple, rapid, and sensitive validated spectrophotometric method was developed for the determination of certain macrolide antibiotics namely, erythromycin (I), azithromycin dihydrate (II), clarithromycin (III), and roxithromycin (IV) in bulk powders, pharmaceutical formulations, and spiked biological fluids. The proposed method is based on the formation of a binary complex between each of the studied drugs and eosin Y in aqueous buffered medium. Under the optimum conditions, the binary complexes showed absorption maxima at 542-544 nm. The absorbance of the binary complexes obeyed Beer's law over the concentration range of 1-10 micro/g/mL for II, 2-20 microg/mL for I and IV, and 3-30 microg/mL for III. The mean percentage recoveries were 100.04 +/- 0.83, 99.98 +/- 0.80, 100.17 +/- 0.91, and 99.55 +/- 0.91, with minimum detectable molarities of 2 x 10(-7) for I and II, 4 x 10(-7) for III, and 3 x 10(-7) for IV. The different experimental parameters affecting the development and stability of the colors were studied and optimized. The proposed method was successfully applied to the analysis of the cited drugs in some pharmaceutical formulations. The results obtained were in good agreement with those obtained using the reference methods. The proposed method was further applied to spiked human urine and plasma. A proposal of the reaction pathway is suggested.  相似文献   

5.
A spectrofluorimetric method was described for the determination of drugs containing active methylene groups adjacent to carbonyl groups. The method was applied successfully to the determination of three life saving cardiovascular drugs, with narrow therapeutic indices: pentoxifylline (I), propafenone hydrochloride (II) and acebutolol hydrochloride (III), in laboratory-prepared mixtures, in commercial tablets and in plasma samples. The method involved the reaction of each of the tested drugs with N1-methyl nicotinamide chloride (NMNCl) in the presence of alkali, followed by addition of formic acid, where highly fluorescent reaction products were produced. The produced fluorescence were measured quantitatively at 472 nm (lambdaex 352 nm), 409 nm (lambdaex 310 nm) and 451 nm (lambdaex 266 nm) for (I), (II), and (III) respectively. The method was linear over concentration ranges of 10-1000 microg/ml , 0.2-12 microg/ml and 0.08-10 microg/ml in standard solutions for (I), (II), and (III) respectively. In spiked human plasma samples, calibration graphs were linear over concentration ranges of 20-1000 microg/ml, 0.2-15 microg/ml and 0.08-10 microg/ml for (I), (II), and (III) respectively. The method showed good accuracy, specificity and precision in both laboratory-prepared mixtures and spiked human plasma samples. The proposed method is simple, with low instrumentation requirements, suitable for quality control application, bioavailability and bioequivalency studies.  相似文献   

6.
Two simple, sensitive, and specific spectrofluorometric procedures have been developed for the determination of labetalol (LBT) in pharmaceuticals and biological fluids. LBT was found to react with Al3+, both in acetate buffer of pH 4.5 (Procedure I) and borate buffer of pH 8.0 (Procedure II), to produce highly fluorescent stable complexes. The fluorescence intensity could be enhanced by the addition of sodium dodecyl sulfate, resulting in 3.5- and 2.7-fold increases in the fluorescence intensity for Procedures I and II, respectively. In both procedures, the fluorescence intensity was measured at 408 nm after excitation at 320 nm. The different experimental parameters affecting the development and stability of the fluorescent products were carefully studied and optimized. The fluorescence intensity-concentration plots were rectilinear over the range of 0.02-0.1 and 0.01-0.05 microg/mL with a detection limit of 0.003 and 0.001 microg/mL for Procedures I and II, respectively. The proposed method was successfully applied to commercial tablets containing LBT. The results were in good agreement with those obtained using a reference spectrofluorometric method. Furthermore, the method was applied for the determination of LBT in spiked human plasma, and the recovery (n = 4) was 93.30 +/- 2.62%. A proposal of the reaction pathway was postulated for Procedures I and II, respectively.  相似文献   

7.
A liquid chromatographic (LC) method was developed for simultaneous measurement of halofuginone (HFN) and amprolium (APL) in chicken muscle and egg. HFN and APL were extracted from chicken muscle and egg with acetonitrile. In chicken egg, they were partially purified by solid-phase extraction (SPE) to separate them from impurities. The LC separation was performed on a 4.6 mm id x 250 mm TSK-gel ODS-80TM column using acetonitrile-McIlvaine buffer, pH 3.4, containing 0.01M sodium lauryl sulfate (42 + 58) as the mobile phase. Ultraviolet detection of HFN and APL was performed at wavelengths of 242 and 265 nm, respectively. Recoveries of HFN and APL from chicken muscle spiked at 0.5 microg/g were 74.8 +/- 17.7 and 94.2 +/- 5.0%, respectively (mean +/- standard deviation [SD], n = 10). In chicken muscle, the lower limit of determination for both APL and HFN was 0.03 microg/g. Recoveries of HFN and APL from chicken egg spiked at 0.5 microg/g by a cleanup procedure using SPE were 54.6 +/- 3.4 and 85.0 +/- 2.4%, respectively (mean +/- SD, n = 5). In chicken egg, the lower limit of determination for both APL and HFN was 0.04 microg/g.  相似文献   

8.
A simple kinetic spectrophotometric method was developed for the determination of josamycin in its dosage forms and spiked human plasma. The method is based on reaction of the drug with 3-methylbenzothiazolin-2-one hydrazone/ferric chloride system for a fixed time of 20 min at 70 degrees C and measuring the produced color at 665 nm. The absorbance-concentration plot is rectilinear over the range of 5.0-30.0 microg/mL with detection limit of 1.0 microg/mL (1.2 x 10(-6) M). The determination of josamycin by the fixed concentration and the rate-constant methods is also feasible with the calibration equations obtained, but the fixed-time method proved to be more applicable. The procedure was successfully applied to commercial tablets. The results obtained were favorably compared with those given by reference methods. The method was further extended to the in vitro determination of josamycin in spiked human plasma. The recovery (n = 8) was 100.76 +/- 3.43%. The stoichiometry of the reaction between the drug and the reagent was studied by adopting the limiting logarithmic method, and a proposal of the reaction pathway was presented.  相似文献   

9.
Two simple, accurate, and reliable spectrophotometric methods have been developed for the determination of 2 antiviral drugs, acyclovir (ACV) and ribavirin (RBV), in their pharmaceutical formulations. These methods are based on oxidation of the 2 drugs with either cerium (IV) ammonium sulfate (Method A) or potassium persulfate (Method B). The products of oxidation in both methods are coupled with 3-methylbenzothiazolin 2-one hydrazone, producing a deep blue color with a maximum absorption wavelength at 630 nm. In Method A, the absorbance-concentration plots were linear over the ranges of 5-50 and 10-60 microg/mL with detection limits of 0.18 microg/mL (8 x 10(-7) M) and 0.63 microg/mL (2.58 x 10(-6) M) for ACV and RBV, respectively. In Method B, the ranges were 5-45 and 20-50 microg/mL with detection limits of 0.11 microg/mL (4.88 x 10(-7) M) and 1.40 microg/mL (5.73 x 10(-6) M) for the 2 drugs, respectively. The molar absorptivities were 4.1 x 10(3) and 3.65 x 10(3) L/mol/cm in Method A and 5.03 x 10(3) and 3.97 x 10(3) L/mol/cm in Method B for the 2 drugs, respectively. The proposed methods were applied successfully for the determination of the 2 drugs in their pharmaceutical formulations. The percentage recoveries +/- standard deviation were 99.57 +/- 0.86 and 100.82 +/- 0.46 for ACV; 99.41 +/- 1.08 and 100.35 +/- 1.03 for RBV. The results obtained were compared statistically with those given by official methods and showed no significant differences regarding accuracy and precision.  相似文献   

10.
A new, specific, and sensitive RP-HPLC method was developed for the simultaneous determination of eprosartan (EPR) and hydrochlorothiazide (HCT). Good chromatographic separation was achieved using a 250 x 4.6 mm id, 5 microm particle size Symmetry C18 column. The mobile phase acetonitrile-0.1 M phosphate buffer (35+65, v/v), pH 4.5, was pumped at a flow rate of 1 mL/min, with UV detection at 275 nm. The method showed good linearity in the ranges of 0.5-50 and 0.1-10 microg/mL, with LOD of 0.06 and 0.02 microg/mL and LOQ of 0.20 and 0.08 microg/mL for EPR and HCT, respectively. The proposed method was successfully applied for the analysis of the studied drugs in their synthetic mixture and co-formulated tablets. The method was further extended to the in vitro and in vivo determination of the two drugs in spiked and real human plasma. Interference likely to be encountered from the co-administered drugs was studied.  相似文献   

11.
A rapid, simple, and highly sensitive second-derivative synchronous fluorometric method has been developed for the simultaneous analysis of binary mixtures of cinnarizine (CN) and nicergoline (NIC). The method is based upon measurement of the native fluorescence of these drugs at constant wavelength difference (Deltalambda) = 80 nm in aqueous methanol (50%, v/v). The different experimental parameters affecting the native fluorescence of the studied drugs were carefully studied and optimized. The fluorescence-concentration plots were rectilinear over the range of 0.025-1.5 and 0.25-5.5 microg/mL for CN and NIC, respectively, with lower detection limits of 0.58 and 0.82 ng/mL and quantitation limits of 1.93 and 2.73 ng/mL for CN and NIC, respectively. The proposed method was successfully applied for the determination of the studied compounds in synthetic mixtures and in commercial tablets. The results obtained were in good agreement with those obtained with reference methods. The high sensitivity attained by the proposed method allowed the determination of CN in real and spiked human plasma. The mean recovery in the case of spiked human plasma [number of trials (n) = 3] was 102.82 +/- 2.17%, while that in real human plasma (n = 3) was 105.25 +/- 2.05.  相似文献   

12.
A pneumatic flow injection-tandem spectrometer system, without a delivery pump was used for the speciation of iron. In this system, the suction force of a pneumatic nebulizer of a flame absorption spectrometer was used for solution delivery through the manifold. The Fe(III) and total Fe concentrations were determined using thiocyanate ion in a UV-Vis spectrometer and a FAAS, respectively. The Fe(II) was determined by the difference. The calibration curves were linear up to 18 microg mL(-1) and 25 microg mL(-1) with detection limits of 0.09 microg mL(-1) and 0.07 microg mL(-1) for Fe(III) and Fe(II), respectively. The mid-range precision and accuracy were <2.5% and +/-3% for the two species, respectively, at a sampling rate of 120 h(-1). This system was applied for the determination of Fe(III) and Fe(II) in industrial water, natural water and spiked samples.  相似文献   

13.
A ratio-spectra zero-crossing first-derivative spectrophotometric method and 2 chemometric methods have been used for the simultaneous determination of ternary mixtures of caffeine (A), 8-chlorotheophylline (B), and chlorphenoxamine hydrochloride (C) in bulk powder and dosage forms. In the ratio-spectra zero-crossing first-derivative spectrophotometric technique (1DD), calibration curves were linear in the range of 4-20 microg/mL for A, B, and C (r = 0.9992, 0.9994, and 0.9976, respectively). The measurements were carried out at 212, 209.2, and 231.4 nm for A, B, and C, respectively. The detection limits for A, B, and C were calculated to be 0.24, 0.34, and 0.13 microg/mL, and the percentage recoveries were 99.1 +/- 0.89, 100.1 +/- 0.95, and 100.1 +/- 1.0, respectively. Two chemometric methods, namely, the partial least-squares (PLS) model and the principal component regression (PCR) model, were also used for the simultaneous determination of the 3 drugs in the ternary mixture. A training set consisting of 15 mixtures containing different ratios of A, B, and C was used. The concentration used for the construction of the PLS and PCR models varied between 4 and 25 microg/mL for each drug. These models were used after their validation for the prediction of the concentrations of A, B, and C in mixtures. The detection limits for A, B, and C were calculated to be 0.13, 0.15, and 0.14 microg/mL, respectively, and the percent recoveries were found to be 99.8 micro 0.96, 99.9 micro 0.94, and 99.9 micro 1.18, respectively, for both methods. The 3 proposed procedures are rapid, simple, sensitive, and accurate. No preliminary separation steps or resolution equations are required; thus, they can be applied to the simultaneous determination of the 3 drugs in commercial tablets and suppositories or in quality-control laboratories.  相似文献   

14.
15.
Two spectrophotometric methods, derivative and multivariate methods, were applied for the determination of binary, ternary, and quaternary mixtures of the water-soluble vitamins thiamine HCI (I), pyridoxine HCI (II), riboflavin (III), and cyanocobalamin (IV). The first method is divided into first derivative and first derivative of ratio spectra methods, and the second into classical least squares and principal components regression methods. Both methods are based on spectrophotometric measurements of the studied vitamins in 0.1 M HCl solution in the range of 200-500 nm for all components. The linear calibration curves were obtained from 2.5-90 microg/mL, and the correlation coefficients ranged from 0.9991 to 0.9999. These methods were applied for the analysis of the following mixtures: (I) and (II); (I), (II), and (III); (I), (II), and (IV); and (I), (II), (III), and (IV). The described methods were successfully applied for the determination of vitamin combinations in synthetic mixtures and dosage forms from different manufacturers. The recovery ranged from 96.1 +/- 1.2 to 101.2 +/- 1.0% for derivative methods and 97.0 +/- 0.5 to 101.9 +/- 1.3% for multivariate methods. The results of the developed methods were compared with those of reported methods, and gave good accuracy and precision.  相似文献   

16.
Five simple and sensitive methods were developed for the determination of leflunomide (I) in the presence of its degradates 4-trifluoromethyl aniline (II) and 3-methyl-4-carboxy isoxazole (III). Method A was based on differential derivative spectrophotometry by measuring the delta(1)D value at 279.5 nm. Beer's law was obeyed in the concentration range of 2.00-20.00 microg/mL with mean percentage accuracy of 100.07 +/- 1.32. Method B depended on first-derivative spectrophotometry and measuring the amplitude at 253.4 nm. Beer's law was obeyed in the concentration range of 2.00-16.00 microg/mL with mean percentage accuracy of 98.42 +/- 1.61. Method C was based on the reaction of degradate (II) with 2,6-dichloroquinone-4-chloroimide (Gibbs reagent). The colored product was measured at 469 nm. Method D depended on the reaction of degradate (II) with para-dimethyl aminocinnamaldehyde (p-DAC). The absorbance of the colored product was measured at 533.4 nm. Method E utilized 3-methyl-2-benzothiazolinone hydrazone in the presence of cerric ammonium sulfate with degradate (II). The green colored product was measured at 605.5 nm. The linearity range was 40.00-280.00, 2.40-24.00, and 30-250 microg/mL with mean percentage accuracy of 100.75 +/- 1.21, 100.13 +/- 1.45, and 99.74 +/- 1.39 for Methods C-E, respectively. All variables were studied to optimize the reaction conditions. The proposed methods have been successfully applied to the analysis of leflunomide in pharmaceutical dosage forms and the results were statistically compared with that previously reported.  相似文献   

17.
A highly sensitive spectrofluorometric method was developed for the determination of verapamil hydrochloride (VP HCl) in pharmaceutical formulations and biological fluids. The proposed method is based on investigation of the fluorescence spectral behavior of VP HCl in micellar systems, such as sodium dodecyl sulfate (SDS) and beta-cyclodextrin (beta-CD). In aqueous solutions of borate buffer of pH 9 and 8.5, VP HCI was well incorporated into SDS and beta-CD, respectively, with enhancement of its native fluorescence. The fluorescence was measured at 318 nm after excitation at 231 nm. The fluorescence intensity enhancements were 183 and 107% in SDS and in beta-CD, respectively. The fluorescence-concentration plots were rectilinear over the range of 0.02-0.2 and 0.02-0.25 microg/mL, with lower detection limits of 5.58 x 10(-3) and 3.62 x 10(-3) microg/mL in SDS and beta-CD, respectively. The method was successfully applied to the analysis of commercial tablets and the results were in good agreement with those obtained with the official method. The method was further applied to the determination of VP HCl in real and spiked human plasma. The mean % recoveries in the case of spiked human plasma (n=4) was 92.59 +/- 3.11 and 88.35 +/- 2.55 using SDS and beta-CD, respectively, while that in real human plasma (n=3) was 90.17 +/- 6.93 and 89.17 +/- 6.50 using SDS and beta-CD, respectively. The application of the method was extended to the stability studies of VP HCl after exposure to ultraviolet radiation and upon oxidation with hydrogen peroxide.  相似文献   

18.
A sensitive, simple, and selective spectrofluorometric method was developed for the determination of fluvoxamine (FXM) in pharmaceutical formulations and biological fluids. The method is based upon the reaction between the drug and fluorescamine in borate buffer of pH 8.0 to yield a highly fluorescent derivative that is measured at 481 nm after excitation at 383 nm. The different experimental parameters affecting the development and stability of the reaction product were carefully studied and optimized. The method was applied for the determination of the drug over the concentration range of 0.1-1.1 microg/mL with a detection limit of 0.01 microg/mL (2 x 10(-8) M). The proposed method was successfully applied to the analysis of commercial tablets. The results obtained were in good agreement with those obtained using a reported spectrophotometric method. The method was applied for the determination of FXM in spiked human plasma with recovery (n=4) of 97.32 +/- 1.23%, while that in real human plasma (n=3) was 90.79 +/- 2.73%. A proposal for the reaction pathway is presented.  相似文献   

19.
A simple and sensitive spectrophotometric method is suggested for analysis of 3 antihistaminic drugs, acrivastine (I), mequitazine (II), and dimethindene maleate (III). The method is based on reaction of the drugs with 7,7,8,8-tetracyanoquinodimethane (TCNQ) in acetonitrile to form highly stable colored products that are measured at 750, 766, and 844 nm for I and II, and 480 and 618 nm for III. Beer's law is obeyed in the ranges of 5-60 microg/mL for 1, 5-50 microg/mL for II, and 10-70 microg/mL for III. The optimum assay conditions and their applicability to the determination of the cited drugs in pharmaceutical formulations are described. The method is statistically analyzed as compared with the European Pharmacopoeia (2001) method for the analysis of dimethindene maleate and reference methods for acrivastine and mequitazine drugs revealing good accuracy and precision.  相似文献   

20.
Three new, simple, sensitive, and accurate stability-indicating methods were developed for quantitative determination of bisacodyl in the presence of its degradation products, monoacetyl bisacodyl (I) and desacetyl bisacodyl (II), in enteric coated tablets, suppositories, and raw material. The first is a spectrodensitometric method in which the drug is separated from I and II on silica gel plates using chloroform-acetone (9 + 1, v/v) as the mobile phase with ultraviolet detection of the separated bands at 223 nm over a concentration range of 0.2-1.4 microg/band for bisacodyl with mean recovery 100.35 +/- 1.923%. The second method is fourth derivative D4 spectrophotometry, which allows determination of bisacodyl in the presence of its degradation products in raw material at 223 nm using acetonitrile as the solvent with adherence to Beer's law over the concentration range 2-18 microg/mL with mean recovery 99.77+/-1.056%. In the third method, the spectrophotometric data of bisacodyl, I, and II using absolute ethanol as solvent were processed by 3 chemometric techniques: classical least-squares, principal component regression, and partial least-squares. A training set consisting of 15 mixtures containing different ratios of bisacodyl, I, and II was used for construction of the 3 models. A validation set consisting of 6 mixtures was used to validate the prediction ability of the suggested models. The 3 chemometric methods were applicable over a concentration range between 2-14microg/mL for bisacodyl with mean recovery of 99.97+/-0.865, 100.01 +/- 0.749, and 99.97 +/- 0.616% for the 3 models, respectively. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied to the analysis of raw material and pharmaceutical formulations containing bisacodyl, except for the second method that applies only for raw material. The validity of the suggested procedures was further assessed by applying the standard addition technique; the recoveries obtained were in accordance with those given by the reference method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号