首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of zirconium n-propoxide in glycol at 300°C yielded microcrystalline tetragonal zirconia (ZrO2). The crystallite size of the product depended on the carbon number of the glycol and increased in the following order (carbon number of glycol): 2<6<4, which suggested that the heterolytic cleavage of O-C bond of gylcoxide formed by transesterification is the prime factor for the formation of the product. In toluene, zirconium isopropoxide also gave tetragonal zirconia at 300°C, and zirconium tert-butoxide decomposed at 200°C yielding amorphous zirconia, while zirconium n-propoxide was stable at 300°C. These results suggest that the reaction in toluene depends on the structure of the alkyl group of the alkoxides. Thus-obtained tetragonal zirconias maintained large surface areas (90–160 m2/g) even after calcination at 500°C.  相似文献   

2.
The relative acid strength and acid amount of solid acids has been determined from the adsorption and desorption of small molecules, such as argon. The order of activation energy for desorption of Ar from a solid acid, determined using temperature-programmed desorption (TPD), is sulfated zirconia > Cs2.5H0.5PW12O40 > proton-type zeolites > silica–alumina. The adsorption isotherms were analyzed using Langmuir and Henry equations. The Henry-type adsorption isotherms were also analyzed using the theory of Cremer and Flügge. The heat of Ar adsorption was 22 kJ mol−1 for sulfated zirconia and ca. 17 kJ mol−1 for mordenite, ZSM-5, and beta-zeolite. Molybdenum oxides reduced at 623 and 773 K exhibited a large heat of adsorption (19.3 and 19.7 kJ mol−1, respectively), and these materials are classified as superacids. W-Nb mixed-oxides and tungstated tin oxide (calcined at 1373 K), which are newly developed solid acids, had a heat of adsorption of 18.1 and 16.9 kJ mol−1, respectively. The type of acid site could be distinguished by comparing the heat of adsorption of Ar and N2. Our data indicate that Ar is useful for the characterization of solid acids.  相似文献   

3.
《Comptes Rendus Chimie》2015,18(10):1094-1105
Nanocrystalline tetragonal zirconia powders have been synthesized by aqueous combustion using glycine (Gly) as a fuel and zirconyl nitrate (ZN) as an oxidizer. The effect of the fuel-to-oxidant molar ratio on the structural and morphological properties of nanocrystalline zirconia powders was studied. Thermodynamic modeling of the combustion reaction showed that the increase in the Gly:ZN molar ratio leads to the increase in theoretical combustion temperature, heat of combustion and amount of produced gases. Powder properties were correlated with the nature of combustion and results of thermodynamic modelling. The increase in the Gly:ZN molar ratio produces more agglomerated powders characterized by a lower degree of uniformity, a lower specific surface area and a slightly bigger crystallite size. On the other hand, the presence of hard agglomerates suppresses the volume expansion, stabilizing tetragonal zirconia, as confirmed by Rietveld refinement. The absence of cubic zirconia was confirmed by FTIR and Raman Spectroscopy. The increase in the calcination temperature led to more agglomerated, compact and less uniform powders. The nanocrystalline nature of zirconia is the reason for the formation of bigger crystallites, the increase in the relative amount of monoclinic phase and sample sintering after calcination at high temperature. The highest measured specific surface area of zirconia was 45.8 m2·g−1, obtained using a fuel-lean precursor.  相似文献   

4.
The nanocrystalline cubic, tetragonal, and submicron monoclinic phases of pure zirconia were prepared by thermal decomposition of carbonate and hydroxide precursors. The crystallization and isothermal phase transformations of the oxide were studied using high temperature X‐ray diffraction, X‐ray diffraction and Raman spectra of quenched samples. Cubic zirconia formed first, and then progressively transformed to tetragonal and monoclinic phases at temperatures as low as 320°C. The cubic, tetragonal, and monoclinic phases for ZrO2 were found to be distinct functions of crystallite size, indicating the nanocrystalline nature of these phases. They were found to exist within critical size ranges of 50 to 140 Å, 100 to 220 Å and 190 to 420 Å (±5 Å), respectively. Thus, as the crystallites grow during annealing, they first transform from cubic to tetragonal and then from tetragonal to monoclinic at critical sizes. The classical Avrami equation for nucleation and growth was applied to the tetragonal to monoclinic phase transition.  相似文献   

5.
Novel cocrystals of promethazine hydrochloride [PTZ‐Cl; systematic name: N,N‐dimethyl‐1‐(10H‐phenothiazin‐10‐yl)propan‐2‐aminium chloride] with succinic acid (PTZ‐Cl‐succinic, C17H21N2S+·Cl?·0.5C4H6O4), fumaric acid (PTZ‐Cl‐fumaric, C17H21N2S+·Cl?·0.5C4H4O4) and adipic acid (PTZ‐Cl‐adipic, C17H21N2S+·Cl?·0.5C6H10O4) were prepared by solvent drop grinding and slow evaporation from acetonitrile solution, along with two oxalic acid cocrystals which were prepared in tetrahydrofuran (the oxalic acid hemisolvate, PTZ‐Cl‐oxalic, C17H21N2S+·Cl?·0.5C2H2O4) and nitromethane (the hydrogen oxalate salt, PTZ‐oxalic, C17H21N2S+·C2HO4?). The crystal structures obtained by crystallization from tetrahydrofuran and acetonitrile include the Cl? ion in the lattice structures, while the Cl? ion is missing from the crystal structure obtained by crystallization from nitromethane (PTZ‐oxalic). In order to explain the formation of the two types of supramolecular configurations with oxalic acid, the intermolecular interaction energies were calculated in the presence of the two solvents and the equilibrium configurations were determined using density functional theory (DFT). The cocrystals were studied by X‐ray diffraction, IR spectroscopy and differential scanning calorimetry. Additionally, a stability test under special conditions and water solubility were also investigated. PTZ‐Cl‐succinic, PTZ‐Cl‐fumaric and PTZ‐Cl‐adipic crystallized having similar lattice parameter values, and showed a 2:1 PTZ‐Cl to dicarboxylic acid stoichiometry. PTZ‐Cl‐oxalic crystallized in a 2:1 stoichiometric ratio, while the structure lacking the Cl atom belongs has a 1:1 stoichiometry. All the obtained crystals exhibit hydrogen bonds of the type PTZ…Cl…(dicarboxylic acid)…Cl…PTZ, except for PTZ‐oxalic, which forms bifurcated bonds between the hydrogen oxalate and promethazinium ions, along with an infinite hydrogen‐bonded chain between the hydrogen oxalate anions.  相似文献   

6.
Aim of the present work is to prepare zirconia nanofibers using microwave assisted sol–gel method. Both honey and microwave powers are employed as structure directing agents to improve the stability and reduce the crystallite size. Honey, acting as capping agent, prevents the particles from hard agglomeration. Soft agglomeration or less agglomeration results in smaller crystallite size that prevents the transformation of tetragonal to monoclinic phase resulting in stabilized tetragonal zirconia (t-ZrO2). Zirconium oxychloride is used as precursor of zirconium and deionized water as solvent. Effect of microwave powers, in the range of 100–900?W with interval of 200?W, on zirconia stabilization is observed. X-ray diffraction analysis shows the presence of phase pure t-ZrO2 at low microwave power ~?100?W with crystallite size ~?26?nm. Formation of phase pure t-ZrO2 at low microwave power is due to the presence of sufficient amount of honey to coat the zirconia crystals. Relatively higher x-ray density has been observed in case of phase pure t-ZrO2 at 100?W of microwave power. This high density and phase purity reveals the high value of hardness (~?1503?HV). Scanning electron microscopy analysis reveals the formation of well-separated nanofibers without agglomeration at 100?W. These nanofibers are purposed for bone implants and bone grafting. Structural transformation along with hard agglomeration is observed with increase in microwave powers from 500?W to 900?W. FTIR and Raman fundamental tetragonal bands, appearing at 490?cm?1 and 148?cm?1, respectively, confirm the formation of t-ZrO2 at low microwave power. Sample with phase purity exhibits high grain boundary resistance (1.95?MΩ) along with high dielectric constant (~?74) and low tangent loss (at log f?=?4.0). It is worth mentioning here that phase pure t-ZrO2 at very low microwave power (~100?W) with high density and well-separated nanofibers has been obtained without any post heat treatment.  相似文献   

7.
Summary Sand filters are used as a filter bed in many ground water treatment plants to remove the physical contaminants and oxidation products. A build-up of radioactivity may take place on the granules, where iron and manganese oxides are deposited and form thin films on the surface of sand filter. The oxides of iron and manganese play an important role in adsorbing radium from ground water. The disposal of those granules makes a significant problem. A batch technique is used for solubilization of radium from sand filters in the presence of some organic acids, which act as reducing agents. These acids are formic acid, acetic acid, benzoic acid, succinic acid, oxalic acid, phthalic acid, and adipic acid. The data were obtained as a function of acidity, temperature, contact time and liquid/solid ratio particle size and shaking speed. It was found that oxalic acid was the best for radium removal. The effectiveness of these acids on radium removal was as follows: oxalic acid > phthalic acid > adipic acid > succinic acid > formic acid > acetic acid. The maximum removal obtained was 69.9% at 1M oxalic acid at 8 ml/g ratio. Reaction kinetics and mechanism parameters of the dissolution process were studied and compared with other published data.  相似文献   

8.
The kinetics of the reactions of acetic, benzoic, formic, oxalic, malic, tartaric, trifluoroacetic, and hydrochloric acids with diphenylcarbonyl oxide Ph2COO was studied. The carbonyl oxide Ph2COO was generated by flash photolysis of diphenyldiazomethane Ph2CN2 in solutions of acetonitrile and benzene at 295 K. The apparent rate constants of the reaction range from 4.6·108 for (COOH)2 in MeCN to 7.5·109 L mol–1 s–1 for acetic acid in a benzene solution. The reaction mechanism was proposed, according to which at the first stage the carbonyl oxide is reversibly solvated by the solvent. Then the solvated carbonyl oxide reacts with the acid molecule by the mechanism of insertion at the O—H bond.  相似文献   

9.
A polymeric precursor method based on the Pechini process was successfully used to synthesize zirconia–12 mol% ceria ceramic powders. The influence of the main process variables (citric acid—ethylene glycol ratio, citric acid—total oxides ratio and calcination temperature) on phase formation and powder morphology (surface area and crystallite size) were investigated. The thermal decomposition behavior of the precursor is presented. X‐ray diffraction (XRD) patterns of powders revealed a crystalline tetragonal zirconia single‐phase, with crystallite diameter ranging from 6 to 15 nm. The BET surface areas were relatively high, reaching 95 m2 g−1. Nitrogen adsorption/desorption on the powders suggested that nonaggregated powders could be attained, depending on the synthesis conditions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
Hydrogen peroxide oxidation of cyclohexane in acetonitrile solution catalyzed by the dinuclear manganese(IV) complex [LMn(O)3MnL](PF6)2 (L=1,4,7-trimethyl-1,4,7-triazacyclononane, TMTACN) at 25 °C in the presence of a carboxylic acid affords cyclohexyl hydroperoxide as well as cyclohexanone and cyclohexanol. A kinetic study of the reactions with participation of three acids (acetic acid, oxalic acid, and pyrazine-2,3-dicarboxylic acid, 2,3-PDCA) led to the following general scheme. In the first stage, the catalyst precursor forms an adduct. The equilibrium constants K1 calculated for acetic acid, oxalic acid, and 2,3-PDCA were 127±8, (7±2)×104, and 1250±50 M−1, respectively. The same kinetic scheme was applied for the cyclohexanol oxidation catalyzed by the complex in the presence of oxalic acid. The oxidation of cyclohexane in water solution using oxalic acid as a co-catalyst gave cyclohexanol and cyclohexanone, which were rapidly transformed into a mixture of over-oxidation products. In the oxidation of cyclohexanol to cyclohexanone, varying the concentrations of the reactants and the reaction time we were able to find optimal conditions and to obtain the cyclohexanone in 94% yield based on the starting cyclohexanol. Oxidation of acetone to acetic acid by the system containing oxalic acid was also studied.  相似文献   

11.
Polycrystalline tetragonal zirconia fiber was obtained by pyrolysis of precursor fibers from citrate‐acetate‐zirconium complex solution. The viscous zirconia sol with good spinnability was prepared by aging the starting solution of ZrOCl2 · 8H2O (ZOC) in the presence of acetic acid (HA) and citric acid (CA). The effects of molar ratio of zirconium cation to carboxylic acid and the aging time on the formation of spinnable sol were investigated. Thermogravimetric (TG) analysis, x‐ray diffraction (XRD), infrared (IR) spectra, and scanning electron microscope (SEM) techniques were used to characterize the sintered fibers. The results show that the fibers obtained at 1400°C are crack‐free with diameter of ca. 5–10 µm.  相似文献   

12.
Aerogel and xerogel sulphated zirconia with defined atomic ratio S/Zr = 0.5 and molar hydrolysis ratio h = nH2O/nZrO2 = 3 show different textural and structural properties after calcination at high temperatures. The aerogel obtained just after solvent evacuation develops only the tetragonal phase, whereas the xerogel dried in an oven is amorphous. Heating to a temperature above 833 K, leads to transition of the tetragonal phase to the monoclinic one for the two solids, due to sulphur loss but the tetragonal phase remains stable for the aerogel . Raman, Infrared and XPS spectroscopies show that the loss of the sulphur at high temperatures seems to be easier for the xerogel than for the aerogel.  相似文献   

13.
Structural characteristics of CeO(2)-ZrO(2)/TiO(2) (CZ/T) and V(2)O(5)/CeO(2)-ZrO(2)/TiO(2) (V/CZ/T) mixed oxide catalysts have been investigated using X-ray diffraction (XRD), BET surface area, Raman spectroscopy (RS), and high-resolution transmission electron microscopy (HREM) techniques. The CeO(2)-ZrO(2) (1:1 mole ratio) solid solution was deposited over a finely powdered TiO(2) support by a deposition precipitation method. A nominal 5 wt % V(2)O(5) was impregnated over the calcined (773 K) CZ/T mixed oxide carrier by a wet impregnation technique. The obtained CZ/T and V/CZ/T samples were further subjected to thermal treatments from 773 to 1073 K to understand the dispersion and temperature stability of these materials. In the case of CZ/T samples, the XRD results suggest the formation of different cubic and tetragonal Ce-Zr-oxide phases, Ce(0.75)Zr(0.25)O(2), Ce(0.6)Zr(0.4)O(2), Ce(0.5)Zr(0.5)O(2), and Ce(0.16)Zr(0.84)O(2) in varying proportions depending on the treatment temperature. With increasing calcination temperature from 773 to 1073 K, the intensity of the lines pertaining to cubic Ce(0.6)Zr(0.4)O(2) and Ce(0.5)Zr(0.5)O(2) phases increased at the expense of cubic Ce(0.75)Zr(0.25)O(2), indicating more incorporation of zirconia into the ceria lattice. The TiO(2) was mainly in the anatase form whose crystallite size also increased with increasing treatment temperature. A better crystallization and more incorporation of zirconia into the ceria lattice was noted when CZ/T was impregnated with V(2)O(5). However, no crystalline V(2)O(5) could be seen from both XRD and RS measurements. In particular, a preferential formation of CeVO(4) compound and an intense tetragonal Ce(0.16)Zr(0.84)O(2) phase were noted beyond 873 K. The HREM results indicate, in the case of CZ/T samples, a well-dispersed Ce-Zr-oxide of the size approximately 5 nm over the bigger crystals ( approximately 40 nm) of TiO(2) when treated at 873 K. The exact structural features of these crystals as determined by digital diffraction analysis of experimental images reveal that the Ce-Zr-oxides are mainly in the cubic fluorite geometry and the TiO(2) is in anatase form. A better crystallization of Ce-Zr-oxides ( approximately 8 nm) over the surface of bigger crystals of TiO(2) was noted at 1073 K. A further enhancement in the crystallite size and zirconia-rich tetragonal phase was noted in the case of V/CZ/T samples. Further, the structure of CeVO(4) formed was also clearly identified in conformity with XRD and RS results.  相似文献   

14.
The H2 flow rate through the 30-μm thick foil from Pd—Ru(6%) and Pd—Ru(10%) alloys at 673 and 773 K was found to be controlled by the diffusion of H atoms in the foil bulk. The interrelation between hydrogen permeability through the Pd—In(6%)—Ru(0.5%), Pd—Ru(10%), Pd—Ru(6%), and Pd—Ag(23%) membranes and the permeability pre-exponential factors in the Sieverts equation in the 573—773 K temperature interval indicated that the hydrogen permeability depended on the structural characteristics of palladium alloys. The influence of the CO2, CH4, and water vapor impurities on the H2 flow rate through the studied membranes depended on the driving force nature (the sweep gas or transmembrane pressure) used for the development of the partial hydrogen pressure difference across the membrane. The negative influence of CH4 and CO2 was observed only when using a transmembrane pressure and at the impurity content of 20% or more. This effect increased with increasing temperature in the 573—773 K range, with the influence of CO2 being more pronounced due to its reaction with hydrogen leading to the formation of CO. The influence of water vapor was studied at its 11—23% content in hydrogen and at 573 and 773 K of temperature. The negative influence of water vapor was found to subside as its content in the hydrogen mixture decreased and the temperature increased. It was shown that water vapor can be used as a sweep gas and at T = 773 K its influence on the H2 flow rate through the membrane was almost the same as that of N2.  相似文献   

15.
Incorporation of hydrogen in Rh/TiO2 samples during high temperature reduction (H2 at T > 573 K), has been studied by TPD-MS. ESR and NMR data suggest that hydride-like species associated to Ti3+ ions at the support are formed, i.e, (Ti-H)3+. Rh(3d) XPS peaks (at 311.2, 306.5 eV) remain unchanged after removal of such hydride-like species (by outgassing at 773 K), though it modifies the adsorption capacity for CO and H2, monitored by i.r. and NMR, thus indicating a SMSI effect which is reversed by outgassing at 773 K the sample. By heating in CO at 373–473 K bands at 1590, 1470 and 1220 cm-1 are developed only in the samples saturated with hydrogen, while CH3OH is detected in the gas phase. Experiments using a pulse microreactor in conditions that allow formation of such (Ti-H)3+ species, lead to methanol as the only product of syngas reaction. A model is proposed to explain generation of oxygenated compounds on these catalysts, whieh assumes reaction of the hydride-like species at the TiO2 support with CO molecules either directly interacting with the support or hounded to the rhodium at the metal-support interface.  相似文献   

16.
A novel magnetic SO4 2−-Y2O3-Fe3O4-ZrO2 solid acid catalyst was prepared by the co-precipitation method. The results revealed that the introduction of Y2O3 improved markedly the thermal stability of tetragonal zirconia. The catalyst exhibited high catalytic activity and stability in cyclohexanone condensation.  相似文献   

17.
Formation of zirconia nanocrystals in the course of thermal treatment of an X-ray amorphous zirconium oxyhydroxide was studied. It was shown that the formation of tetragonal and monoclinic polymorphs of ZrO2 in the temperature range from 500 to 700°C occurs owing to dehydration and crystallization of amorphous hydroxide. An increase of the temperature up to 800°C and higher activates mass transfer processes and, as a result, activates the nanoparticle growth and increases the fraction of the phase based on monoclinic modification of ZrO2 due to mass transfer from the nanoparticles with the non-equilibrium tetragonal structure. Herewith, formed ZrO2 nanocrystals with monoclinic structure have a broad size distribution of crystallites, and the average crystallite size after thermal treatment at 1200°C for 20 min is about 42 nm.  相似文献   

18.
The behaviour of the [Ru2(CO)4(CH3COO)2]n/tributylphosphine/acetic acid system has been investigated as a function of reaction conditions and molar ratios of reactants. Tricyclohexylphosphine and triethylphosphite were also used as ligands and investigation was extended to the related oxalic, malonic, succinic, glutaric and adipic acid derivatives. These derivatives were isolated and characterized in view of their possible role as catalysts in the homogeneous hydrogenation of carboxylic acids in the presence of phosphine- or phosphite-substituted ruthenium carbonyl derivatives.  相似文献   

19.
用双氧水绿色氧化环己酮合成己二酸的研究   总被引:16,自引:0,他引:16  
以30%的双氧水为氧化剂, 钨酸钠与含N或O的双齿有机配体(草酸)形成的络合物为催化剂, 在无有机溶剂、无相转移剂的条件下, 研究了环己酮氧化制己二酸的反应. 研究结果表明, 用廉价的草酸为配体, 最佳反应条件为钨酸钠∶草酸∶环己酮∶30%的双氧水的物质的量比为2.0∶3.3∶100∶350, 在92 ℃下反应12 h, 可制得80.6%的己二酸; 用GC-MS跟踪了氧化过程中三种主要物质环己酮、己内酯及己二酸含量随反应时间的变化关系, 提出了其主要氧化机理为环己酮首先经Beayer-Villiger氧化反应生成己内酯, 己内酯进一步氧化成己二酸.  相似文献   

20.
Aqueous‐phase ketonization of bio‐based acetic acid is important to improve the conversion efficiency of biomass resources. In this study, ZrMn mixed oxides (ZrMnOx) with high aqueous‐phase ketonization activity are synthetized through a carbonization/oxidation method (COM) and solvothermal method (STM). The results show that ZrMnOx prepared by COM possesses tetragonal ZrO2, and hausmannite Mn3O4 is observed only at a high oxidation temperature of 750 °C. Low‐temperature and long oxidation results in decreased crystallinity and crystallite size, which is related to highly dispersed Mnn+ species. The catalysts with improved acid sites possess high ketonization activity. Surface areas and pore size of ZrMnOx synthetized by STM are controlled by the solvents for thermal treatment. Compared with water as solvent, ethanol increases the surface area and pore size, resulting in high ketonization activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号