首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[Ru(II)L(NH(3))(4)(pz)Ru(II)(bpy)(2)(NO)](PF(6))(5) (L is NH(3), py, or 4-acpy) was prepared with good yields in a straightforward way by mixing an equimolar ratio of cis-[Ru(NO(2))(bpy)(2)(NO)](PF(6))(2), sodium azide (NaN(3)), and trans-[RuL(NH(3))(4)(pz)] (PF(6))(2) in acetone. These binuclear compounds display nu(NO) at ca. 1945 cm(-)(1), indicating that the nitrosyl group exhibits a sufficiently high degree of nitrosonium ion (NO(+)). The electronic spectrum of the [Ru(II)L(NH(3))(4)(pz)Ru(II)(bpy)(2)(NO)](5+) complex in aqueous solution displays the bands in the ultraviolet and visible regions typical of intraligand and metal-to-ligand charge transfers, respectively. Cyclic voltammograms of the binuclear complexes in acetonitrile give evidence of three one-electron redox processes consisting of one oxidation due to the Ru(2+/3+) redox couple and two reductions concerning the nitrosyl ligand. Flash photolysis of the [Ru(II)L(NH(3))(4)(pz)Ru(II)(bpy)(2)(NO)](5+) complex is capable of releasing nitric oxide (NO) upon irradiation at 355 and 532 nm. NO production was detected and quantified by an amperometric technique with a selective electrode (NOmeter). The irradiation at 532 nm leads to NO release as a consequence of a photoinduced electron transfer. All species exhibit similar photochemical behavior, a feature that makes their study extremely important for their future application in the upgrade of photodynamic therapy in living organisms.  相似文献   

2.
We report a femtosecond pump-probe study on the photochemistry of concentrated aqueous solutions of [RuII(bpy)3]2+, as a function of pump power (up to 2 TW/cm2) at 400 nm excitation. The transient absorption spectra in the 345-660 nm range up to 1 ns time delay enable the observation of the following photoproducts: the triplet 3MLCT (metal-to-ligand-charge-transfer) excited state, the reduced form [RuII(bpy)3]+, the oxidized species [RuIII(bpy)3]3+, and the solvated electron e(aq). The 3MLCT state is formed within the excitation pulse and undergoes vibrational relaxation in 3-5 ps, as evidenced by the shift of the ligand-centered (LC) absorption band below 400 nm. Even at the highest pump powers, the majority of e(aq) originates from multiphoton ionization of [RuII(bpy)3]2+ and not from the solvent, generating [RuIII(bpy)3]3+ as a byproduct. At 10 ps time delay, the total concentration of the three product species is balanced by the depleted concentration of [RuII(bpy)3]2+, even at the highest fluences used, indicating that no further reaction products significantly contribute to the overall photochemistry. On the 100 ps time scale, most probably diffusion-controlled reduction of ground-state [RuII(bpy)3]2+ by solvated electrons occurs, next to recombination between e(aq) and [RuIII(bpy)3]3+.  相似文献   

3.
A series of pyrazine (pz) complexes containing cis-(NH(3))(2)Pt(II), (tmeda)Pt(II) (tmeda = N,N,N',N'-tetramethylethylenediamine), and trans-(NH(3))(2)Pt(II) entities have been prepared and characterized by X-ray crystallography and/or 1H NMR spectroscopy. In these compounds, the pz ligands act as monodentate (1-3) or bidentate bridging ligands (4-7). Three variants of the latter case are described: a dinuclear complex [Pt(II)]2 (4b), a cyclic tetranuclear [Pt(II)](4) complex (5), and a trinuclear mixed-metal complex [Pt2Ag] (7). Mono- and bidentate binding modes are readily differentiated by 1H NMR spectroscopy, and the assignment of pz protons in the case of monodentate coordination is aided by the observation of (195)Pt satellites. Formation of the open molecular box cis-[{(NH3)2Pt(pz)}4](NO3)8.3.67H2O (5) from cis-(NH3)2Pt(II) and pz follows expectations of the "molecular library approach" for the generation of a cyclic tetramer.  相似文献   

4.
The oxidations of cis- and trans-[OsIII(tpy)(Cl)2(NH3)](PF6), cis-[OsII(bpy)2(Cl)(NH3)](PF6), and [OsII(typ)(bpy)(NH3)](PF6)2 have been studied by cyclic voltammetry and by controlled-potential electrolysis. In acetonitrile or in acidic, aqueous solution, oxidation is metal-based and reversible, but as the pH is increased, oxidation and proton loss from coordinated ammonia occurs. cis- and trans-[OsIII(tpy)(Cl)2(NH3)](PF6) are oxidized by four electrons to give the corresponding OsVI nitrido complexes, [OSVI(typ)(Cl)2(N)]+. Oxidation of [Os(typ)(bpy)(NH3)](PF6)2 occurs by six electrons to give [Os(tpy)(bpy)(NO)](PF6)3. Oxidation of cis-[OsII(bpy)2(Cl)(NH3)](PF6) at pH 9.0 gives cis-[OsII(bpy)2(Cl)(NO)](PF6)2 and the mixed-valence form of the mu-N2 dimer [cis-[Os(bpy)2(Cl)2[mu-N2)](PF6)3. With NH4+ added to the electrolyte, cis-[OsII(bpy)2(Cl)(N2)](PF6) is a coproduct. The results of pH-dependent cyclic voltammetry measurements suggest OsIV as a common intermediate in the oxidation of coordinated ammonia. For cis- and trans-[OsIII(tpy)(Cl)2(NH3)]+, OsIV is a discernible intermediate. It undergoes further pH-dependent oxidation to [OsVI(tpy)(Cl)2(N)]+. For [OsII(tpy)(bpy)(NH3)]2+, oxidation to OsIV is followed by hydration at the nitrogen atom and further oxidation to nitrosyl. For cis-[OsII(bpy)2(Cl)-(NH3)]+, oxidation to OsIV is followed by N-N coupling and further oxidation to [cis-[Os(bpy)2(Cl)2(mu-N2)]3+. At pH 9, N-N coupling is competitive with capture of OsIV by OH- and further oxidation, yielding cis-[OsII(bpy)2(Cl)(NO)]2+.  相似文献   

5.
Template-assisted formation of multicomponent Pd(6) coordination prisms and formation of their self-templated triply interlocked Pd(12) analogues in the absence of an external template have been established in a single step through Pd-N/Pd-O coordination. Treatment of cis-[Pd(en)(NO(3))(2)] with K(3) tma and linear pillar 4,4'-bpy (en=ethylenediamine, H(3) tma=benzene-1,3,5-tricarboxylic acid, 4,4'-bpy=4,4'-bipyridine) gave intercalated coordination cage [{Pd(en)}(6)(bpy)(3)(tma)(2)](2)[NO(3)](12) (1) exclusively, whereas the same reaction in the presence of H(3) tma as an aromatic guest gave a H(3) tma-encapsulating non-interlocked discrete Pd(6) molecular prism [{Pd(en)}(6)(bpy)(3)(tma)(2)(H(3)tma)(2)][NO(3)](6) (2). Though the same reaction using cis-[Pd(NO(3))(2)(pn)] (pn=propane-1,2-diamine) instead of cis-[Pd(en)(NO(3))(2)] gave triply interlocked coordination cage [{Pd(pn)}(6)(bpy)(3)(tma)(2)](2)[NO(3)](12) (3) along with non-interlocked Pd(6) analogue [{Pd(pn)}(6)(bpy)(3) (tma)(2)](NO(3))(6) (3'), and the presence of H(3) tma as a guest gave H(3) tma-encapsulating molecular prism [{Pd(pn)}(6)(bpy)(3)(tma)(2)(H(3) tma)(2)][NO(3)](6) (4) exclusively. In solution, the amount of 3' decreases as the temperature is decreased, and in the solid state 3 is the sole product. Notably, an analogous reaction using the relatively short pillar pz (pz=pyrazine) instead of 4,4'-bpy gave triply interlocked coordination cage [{Pd(pn)}(6) (pz)(3)(tma)(2)](2)[NO(3)](12) (5) as the single product. Interestingly, the same reaction using slightly more bulky cis-[Pd(NO(3))(2)(tmen)] (tmen=N,N,N',N'-tetramethylethylene diamine) instead of cis-[Pd(NO(3))(2)(pn)] gave non-interlocked [{Pd(tmen)}(6)(pz)(3)(tma)(2)][NO(3)](6) (6) exclusively. Complexes 1, 3, and 5 represent the first examples of template-free triply interlocked molecular prisms obtained through multicomponent self-assembly. Formation of the complexes was supported by IR and multinuclear NMR ((1)H and (13)C) spectroscopy. Formation of guest-encapsulating complexes (2 and 4) was confirmed by 2D DOSY and ROESY NMR spectroscopic analyses, whereas for complexes 1, 3, 5, and 6 single-crystal X-ray diffraction techniques unambiguously confirmed their formation. The gross geometries of H(3) tma-encapsulating complexes 2 and 4 were obtained by universal force field (UFF) simulations.  相似文献   

6.
We report a high yield, two-step synthesis of fac-[Ru(bpy)(CH3CN)3NO2]PF6 from the known complex [(p-cym)Ru(bpy)Cl]PF6 (p-cym = eta(6)-p-cymene). [(p-cym)Ru(bpy)NO2]PF6 is prepared by reacting [(p-cymene)Ru(bpy)Cl]PF6 with AgNO3/KNO2 or AgNO2. The 15NO2 analogue is prepared using K15NO2. Displacement of p-cymene from [(p-cym)Ru(bpy)NO2]PF6 by acetonitrile gives [Ru(bpy)(CH3CN)3NO2]PF6. The new complexes [(p-cym)Ru(bpy)NO2]PF6 and fac-[Ru(bpy)(CH3CN)3NO2]PF6 have been fully characterized by 1H and 15N NMR, IR, elemental analysis, and single-crystal structure determination. Reaction of [Ru(bpy)(CH3CN)3NO2]PF6 with the appropriate ligands gives the new complexes [Ru(bpy)(Tp)NO2] (Tp = HB(pz)3-, pz = 1-pyrazolyl), [Ru(bpy)(Tpm)NO2]PF6 (Tpm = HC(pz)3), and the previously prepared [Ru(bpy)(trpy)NO2]PF6 (trpy = 2,2',6',2' '-terpyridine). Reaction of the nitro complexes with HPF6 gives the new nitrosyl complexes [Ru(bpy)TpNO][PF6]2 and [Ru(bpy)(Tpm)NO][PF6]3. All complexes were prepared with 15N-labeled nitro or nitrosyl groups. The nitro and nitrosyl complexes were characterized by 1H and 15N NMR and IR spectroscopy, elemental analysis, cyclic voltammetry, and single-crystal structure determination for [Ru(bpy)TpNO][PF6]2. For the nitro complexes, a linear correlation is observed between the nitro 15N NMR chemical shift and 1/nu(asym), where nu(asym) is the asymmetric stretching frequency of the nitro group.  相似文献   

7.
The synthesis of [Ru(NO(2))L(bpy)(2)](+) (bpy = 2,2'-bipyridine and L = pyridine (py) and pyrazine (pz)) can be accomplished by addition of [Ru(NO)L(bpy)(2)](PF(6))(3) to aqueous solutions of physiological pH. The electrochemical processes of [Ru(NO(2))L(bpy)(2)](+) in aqueous solution were studied by cyclic voltammetry and differential pulse voltammetry. The anodic scan shows a peak around 1.00 V vs. Ag/AgCl attributed to the oxidation process centered on the metal ion. However, in the cathodic scan a second peak around -0.60 V vs. Ag/AgCl was observed and attributed to the reduction process centered on the nitrite ligand. The controlled reduction potential electrolysis at -0.80 V vs. Ag/AgCl shows NO release characteristics as judged by NO measurement with a NO-sensor. This assumption was confirmed by ESI/MS(+) and spectroelectrochemical experiment where cis-[Ru(bpy)(2)L(H(2)O)](2+) was obtained as a product of the reduction of cis-[Ru(II)(NO(2))L(bpy)(2)](+). The vasorelaxation observed in denuded aortic rings pre-contracted with 0.1 mumol L(-1) phenylephrine responded with relaxation in the presence of cis-[Ru(II)(NO(2))L(bpy)(2)](+). The potential of rat aorta cells to metabolize cis-[Ru(II)(NO(2))L(bpy)(2)](+) was also followed by confocal analysis. The obtained results suggest that NO release happens by reduction of cis-[Ru(II)(NO(2))L(bpy)(2)](+) inside the cell. The maximum vasorelaxation was achieved with 1 x 10(-5) mol L(-1) of cis-[Ru(II)(NO(2))L(bpy)(2)](+) complex.  相似文献   

8.
9.
Novel polynuclear complexes of rhenium and ruthenium containing PCA (PCA = 4-pyridinecarboxaldehyde azine or 4-pyridinealdazine or 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene) as a bridging ligand have been synthesized as PF(6-) salts and characterized by spectroscopic, electrochemical, and photophysical techniques. The precursor mononuclear complex, of formula [Re(Me(2)bpy)(CO)(3)(PCA)](+) (Me(2)bpy = 4,4'-dimethyl-2,2'-bipyridine), does not emit at room temperature in CH(3)CN, and the transient spectrum found by flash photolysis at lambda(exc) = 355 nm can be assigned to a MLCT (metal-to-ligand charge transfer) excited state [(Me(2)bpy)(CO)(3)Re(II)(PCA(-))](+), with lambda(max) = 460 nm and tau < 10 ns. The spectral properties of the related complexes [[Re(Me(2)bpy)(CO)(3)}(2)(PCA)](2+), [Re(CO)(3)(PCA)(2)Cl], and [Re(CO)(3)Cl](3)(PCA)(4) confirm the existence of this low-energy MLCT state. The dinuclear complex, of formula [(Me(2)bpy)(CO)(3)Re(I)(PCA)Ru(II)(NH(3))(5)](3+), presents an intense absorption in the visible spectrum that can be assigned to a MLCT d(pi)(Ru) --> pi(PCA); in CH(3)CN, the value of lambda (max) = 560 nm is intermediate between those determined for [Ru(NH(3))(5)(PCA)](2+) (lambda(max) = 536 nm) and [(NH(3))(5)Ru(PCA)Ru(NH(3))(5)](4+) (lambda(max) = 574 nm), indicating a significant decrease in the energy of the pi-orbital of PCA. The mixed-valent species, of formula [(Me(2)bpy)(CO)(3)Re(I)(PCA)Ru(III)(NH(3))(5)](4+), was obtained in CH(3)CN solution, by bromine oxidation or by controlled-potential electrolysis at 0.8 V in a OTTLE cell of the [Re(I),Ru(II)] precursor; the band at lambda(max) = 560 nm disappears completely, and a new band appears at lambda(max) = 483 nm, assignable to a MMCT band (metal-to-metal charge transfer) Re(I) --> Ru(III). By using the Marcus-Hush formalism, both the electronic coupling (H(AB)) and the reorganization energy (lambda) for the metal-to-metal intramolecular electron transfer have been calculated. Despite the considerable distance between both metal centers (approximately 15.0 Angstroms), there is a moderate coupling that, together with the comproportionation constant of the mixed-valent species [(NH(3))(5)Ru(PCA)Ru(NH(3))(5)](5+) (K(c) approximately 10(2), in CH(3)CN), puts into evidence an unusual enhancement of the metal-metal coupling in the bridged PCA complexes. This effect can be accounted for by the large extent of "metal-ligand interface", as shown by DFT calculations on free PCA. Moreover, lambda is lower than the driving force -DeltaG degrees for the recombination charge reaction [Re(II),Ru(II)] --> [Re(I),Ru(III)] that follows light excitation of the mixed-valent species. It is then predicted that this reverse reaction falls in the Marcus inverted region, making the heterodinuclear [Re(I),Ru(III)] complex a promising model for controlling the efficiency of charge-separation processes.  相似文献   

10.
The novel bridging ligand 1,8-bis(2,2':6',2"-terpyridyl)anthracene (btpyan) is synthesized by three reactions from 1,8-diformylanthracene to connect two [Ru(L)(OH)]+ units (L = 3,6-di-tert-butyl-1,2-benzoquinone (3,6-tBu2qui) and 2,2'-bipyridine (bpy)). An addition of tBuOK (2.0 equiv) to a methanolic solution of [RuII2(OH)2(3,6-tBu2qui)2(btpyan)](SbF6)2 ([1](SbF6)2) results in the generation of [RuII2(O)2(3,6-tBu2sq)2(btpyan)]0 (3,6-tBu2sq = 3,6-di-tert-butyl-1,2-semiquinone) due to the reduction of quinone coupled with the dissociation of the hydroxo protons. The resultant complex [RuII2(O)2(3,6-tBu2sq)2(btpyan)]0 undergoes ligand-localized oxidation at E1/2 = +0.40 V (vs Ag/AgCl) to give [RuII2(O)2(3,6-tBu2qui)2(btpyan)]2+ in MeOH solution. Furthermore, metal-localized oxidation of [RuII2(O)2(3,6-tBu2qui)2(btpyan)]2+ at Ep = +1.2 V in CF3CH2OH/ether or water gives [RuIII2(O)2(3,6-tBu2qui)2(btpyan)]4+, which catalyzes water oxidation. Controlled-potential electrolysis of [1](SbF6)2 at +1.70 V in the presence of H2O in CF3CH2OH evolves dioxygen with a current efficiency of 91% (21 turnovers). The turnover number of O2 evolution increases to 33,500 when the electrolysis is conducted in water (pH 4.0) by using a [1](SbF6)2-modified ITO electrode. On the other hand, the analogous complex [RuII2(OH)2(bpy)2(btpyan)](SbF6)2 ([2](SbF6)2) shows neither dissociation of the hydroxo protons, even in the presence of a large excess of tBuOK, nor activity for the oxidation of H2O under similar conditions.  相似文献   

11.
N,N'-Bis(carboxymethyl)-N,N'-dinitroso-1,4-phenylenediamine (1) fragments to release 1 equiv of NO* and the denitrosated radical of 1 (2), when exposed to a approximately 10 ns, 308 nm laser pulse. Species 2 can fragment to give another equivalent of NO* and the doubly denitrosated quinoimine derivative of 1 (3), it can recombine with NO* to give 1 and ring-nitrosated isomers of 1, or in the presence of a reducing agent, 2 can be reduced (to species 4). Photogenerated NO* can be used to probe fast reactions of biochemical interest, making 1 a valuable research tool. This paper focuses on the chemistry of 2, whose reactivity must be well characterized if 1 is to be used to its full potential. [Ru(NH3)6]2+ (RuII) and [Fe(CN)6]4- (FeII) were both shown to reduce 2, with bimolecular rate constants in the diffusion limit. When solutions initially containing 70 microM of RuII, 20 microM myoglobin (Mb) and varying amounts of 1 were irradiated, the only Mb reaction product was nitrosomyoglobin (MbNO). In contrast, in solutions containing only Mb and 1, Mb is converted to both MbNO and oxidized myoglobin (metMb). When FeII was used in place of RuII, Mb was oxidized to metMb, but approximately 100x more slowly than in solutions containing only Mb and 1. This showed that 2 first oxidized FeII to [Fe(CN)6]3- (FeIII), which then oxidized Mb at the slower rate. The ratio metMb/MbNO obtained in the experiments with FeII was 0.6, whereas the ratio predicted from previously known chemistry of 2 was approximately 1 under the experimental conditions. The result is explained if, upon photolysis, 1 first forms a caged encounter complex [2, NO*], which fragments to give 3 and 2 equiv of NO*, without ever releasing free 2 into solution. This hypothesis was further strengthened by analyzing the amount of NO* generated by photolysis of 1 in the absence of added reductant. The original mechanism underestimates the NO* generated, a problem solved by invoking direct release of NO* and 3 from photolysis of 1.  相似文献   

12.
A new Ru(II) complex of [Ru(bpy)2(Hmspip)]Cl2 {in which bpy=2,2'-bipyridine, Hmspip=2-(4-(methylsulfonyl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline} have been synthesized and characterized. The ground- and excited-state acid-base properties of [Ru(bpy)2(Hmspip)]Cl2 and its parent complex of [Ru(bpy)2(Hpip)]Cl2 {Hpip=2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline} have been studied by UV-visible (UV-vis) and emission spectrophotometric pH titrations. [Ru(bpy)2(Hmspip)]Cl2 acts as a calf thymus DNA intercalators with a binding constant of 4.0×10(5) M(-1) in buffered 50 mM NaCl, as evidenced by UV-vis and luminescence titrations, steady-state emission quenching by [Fe(CN)6]4-, DNA competitive binding with ethidium bromide, reverse salt titrations and viscosity measurements.  相似文献   

13.
[Cp*Rh(eta1-NO3)(eta2-NO3)] (1) reacted with pyrazine (pyz) to give a dinuclear complex [Cp*Rh(eta1-NO3)(mu-pyz)(0.5)]2.CH2Cl2(3.CH2Cl2). Tetranuclear rectangles of the type [Cp*Rh(eta1,mu-X)(mu-L)(0.5)]4(OTf)4(4a: X = N3, L = bpy; 4b: X = N3, L = bpe; 4c: X = NCO, L = bpy) were prepared from [Cp*Rh(H2O)3](OTf)2 (2), a pseudo-halide (Me3SiN3 or Me3SiNCO), and a linear dipyridyl [4,4'-bipyridine (bpy) or trans-1,2-bis(4-pyridyl)ethylene (bpe)] by self-assembly through one-pot synthesis at room temperature. Treating complex with NH4SCN and dipyridyl led to the formation of dinuclear rods, [Cp*Rh(eta1-SCN)3]2(LH2) (5a: L = bpy; 5b: L = bpe), in which two Cp*Rh(eta1-SCN)3 units are connected by the diprotonated dipyridyl (LH2(2+)) through N(+)-H...N hydrogen bonds. Reactions of complex 2 with 1-(trimethylsilyl)imidazole (TMSIm) and dipyridyl (bpy or bpe) also produced another family of dinuclear rods [Cp*Rh(ImH)3]2.L (6a: L = bpy; 6b: L = bpe). Treating 1 and 2 with TMSIm and NH4SCN (in the absence of dipyridyl) generated a 1-D chain [Cp*Rh(ImH)3](NO3)2 (7) and a 1-D helix [Cp*Rh(eta1-SCN)2(eta1-SHCN)].H2O (8.H2O), respectively. The structures of complexes 3.CH2Cl2, 4a.H2O, 4c.2H2O, 5b, 6a, 7 and 8.H2O were determined by X-ray diffraction.  相似文献   

14.
New silver(I) complexes have been synthesized from the reaction of AgNO(3), monodentate tertiary phosphanes PR(3) (PR(3) = P(C(6)H(5))(3), P(o-C(6)H(4)CH(3))(3), P(m-C(6)H(4)CH(3))(3), P(p-C(6)H(4)CH(3))(3), PCH(3)(C(6)H(5))(2)) and two novel electron withdrawing ligands: potassium dihydrobis(3-nitropyrazol-1-yl)borate and potassium dihydrobis(3-trifluoromethylpyrazol-1-yl)borate. These compounds have been characterized by elemental analyses, FT-IR, ESI-MS and multinuclear ((1)H, (19)F and (31)P) NMR spectroscopy. Solid state structures of the potassium salts K[H(2)B(3-(NO(2))pz)(2)] and K[H(2)B(3-(CF(3))pz)(2)] have been reported. They form polymeric networks due to intermolecular contacts of various types between the potassium ion and atoms of the neighboring molecules. The silver adducts [H(2)B(3-(NO(2))pz)(2)]Ag[P(C(6)H(5))(3)](2) and [H(2)B(3-(NO(2))pz)(2)]Ag[P(p-C(6)H(4)CH(3))(3)] have pseudo tetrahedral and trigonal planar silver sites, respectively. The bis(pyrazolyl)borate ligand acts as a kappa(2)-N(2) donor. The nitro-substituents are coplanar with the pyrazolyl rings in all these adducts indicating efficient electron delocalization between the two units. The [H(2)B(3-(CF(3))pz)(2)]Ag[P(C(6)H(5))(3)] complex has been obtained from re-crystallization of {[H(2)B(3-(CF(3))pz)(2)]Ag[P(C(6)H(5))(3)](2)} in a dichloromethane-diethyl ether solution; it is a three-coordinate, trigonal planar silver complex.  相似文献   

15.
The reaction of cis-[Ru(NO)(CH(3)CN)(bpy)(2)](3+) (bpy = 2,2'-bipyridine) in H(2)O at room temperature proceeded to afford two new nitrosylruthenium complexes. These complexes have been identified as nitrosylruthenium complexes containing the N-bound methylcarboxyimidato ligand, cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](2+), and methylcarboxyimido acid ligand, cis-[Ru(NO)(NH=C(OH)CH(3))(bpy)(2)](3+), formed by an electrophilic reaction at the nitrile carbon of the acetonitrile coordinated to the ruthenium ion. The X-ray structure analysis on a single crystal obtained from CH(3)CN-H(2)O solution of cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](PF(6))(3) has been performed: C(22)H(20.5)N(6)O(2)P(2.5)F(15)Ru, orthorhombic, Pccn, a = 15.966(1) A, b = 31.839(1) A, c = 11.707(1) A, V = 5950.8(4) A(3), and Z = 8. The structural results revealed that the single crystal consisted of 1:1 mixture of cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](2+) and cis-[Ru(NO)(NH=C(OH)CH(3))(bpy)(2)](3+) and the structural formula of this single crystal was thus [Ru(NO)(NH=C(OH(0.5))CH(3))(bpy)(2)](PF(6))(2.5). The reaction of cis-[Ru(NO)(CH(3)CN)(bpy)(2)](3+) in dry CH(3)OH-CH(3)CN at room temperature afforded a nitrosylruthenium complex containing the methyl methylcarboxyimidate ligand, cis-[Ru(NO)(NH=C(OCH(3))CH(3))(bpy)(2)](3+). The structure has been determined by X-ray structure analysis: C(25)H(29)N(8)O(18)Cl(3)Ru, monoclinic, P2(1)/c, a = 13.129(1) A, b = 17.053(1) A, c = 15.711(1) A, beta = 90.876(5) degrees, V = 3517.3(4) A(3), and Z = 4.  相似文献   

16.
In order to model the photoinduced electron-transfer reactions from the manganese cluster to the photoactive P680 chlorophylls in photosystem II, three heterohexanuclear complexes, [Mn2III,IVO2[RuII(bpy)2(Ln)]4]11+ [bpy = 2,2'-bipyridine, n = 2 (1a), 4 (1b), 6 (1c)], in which one MnIII,IV(micro-O)2 center is covalently linked to four RuII(bpy)3-like moieties by bridged bis(bipyridine) Ln ligands, have been synthesized and characterized. The electrochemical, photophysical, and photochemical properties of these complexes have been investigated in CH3CN. The cyclic voltammograms and rotating-disk electrode curves of the three complexes show the presence of two very close successive reversible oxidation processes corresponding to the Mn2III,IV/Mn2IV,IV and RuII/RuIII redox couples (estimated E1/2 approximately 0.82 and 0.90 V, respectively). The lower potential of the Mn2III,IV subunit compared to those of the RuII moieties indicates that the RuIII species can act as an efficient oxidant toward the Mn2III,IV core. The two oxidized forms of the complexes [Mn2IV,IVO2[RuII(bpy)2(Ln)]4]12+ (2a-c) and [Mn2IV,IVO2[RuIII(bpy)2(Ln)]4]16+ (3a-c) obtained in good yields (>90% for 2a-c and >85% for 3a-c) by sequential electrolyses are very stable. Photophysical studies show that the 3MLCT excited state of the Ru(bpy)3 centers is moderately quenched by the Mn2III,IV(micro-O)2 core (15-25% depending on the length of the bridging alkyl chain). Nevertheless, this energy transfer can be easily short-circuited in the presence of an external irreversible electron acceptor like the (4-bromophenyl)diazonium cation, by an electron transfer leading, in a stepwise fashion, to the stable one- and five-electron-oxidized species 2a-c and 3a-c, respectively, also in good yields, under continuous irradiation of the solutions. Electro- and photoinduced oxidation experiments have been followed by UV-visible and electron paramagnetic resonance spectroscopy.  相似文献   

17.
The complexes of general formulas [RuII(terpy)(4-CO2H-4'-Mebpy)(X)]n+ (X = NO (n = 3) and NO2 (n = 1); 1, 2) and [RuII(terpy)(4-COGHK-4'-Mebpy)(X)] (X = NO (n = 3) and NO2 (n = 1); 3, 4) were synthesized and characterized. The complex [RuII(terpy)(4-CO2-4'-Mebpy)(NO2)]_7.5H2O has also been characterized by X-ray crystallographic studies. It crystallizes in the triclinic system: a = 9.4982(1) A, b = 13.1330(1) A, c = 14.2498(2) A; alpha = 110.5870(6) x bc, beta = 98.4048(5) x bc, gamma = 106.4353(5), P1, Z = 2. The crystal structure reveals an extended hydrogen-bonding network. Two water molecules form strong hydrogen bonds with the nitro and the carboxylic oxygen atoms of two separate units of the complex, resulting in a dimeric unit. The dimers are bridged by a (H2O)15 cluster, consisting of two cyclo-(H2O)6 species, while an exo-H2O(8) connects them. Two more exo-H2O molecules are joined together and connect the cyclo-(H2O)6 units with the H2O(1) of the dimeric unit. It was found that complexes 1 and 3 can be transformed into their nitro derivatives in aqueous media at neutral pH. Photorelease of NO in dry MeCN solutions was observed for complexes 1 and 3. Also, complex 2 partially releases (NO2)- in MeCN upon visible light irradiation. Complex 2 interacts with short fragments (70-300 bp) of calf thymus DNA shortening slightly the apparent polynucleotide length, while the conjugation of the peptide GHK to it (2) affects its DNA-binding mode. The peptide moiety of complex 4 was found to interact with the DNA helix in a synergistic way with the whole complex. Preliminary results of photocleavage of DNA by complex 2 are also reported.  相似文献   

18.
Ruthenium nitrosyl complexes containing the Kl?ui's oxgyen tripodal ligand L(OEt)(-) ([CpCo{P(O)(OEt)(2)}(3)](-) where Cp = η(5)-C(5)H(5)) were synthesized and their photolysis studied. The treatment of [Ru(N^N)(NO)Cl(3)] with [AgL(OEt)] and Ag(OTf) afforded [L(OEt)Ru(N^N)(NO)][OTf](2) where N^N = 4,4'-di-tert-butyl-2,2'-bipyridyl (dtbpy) (2·[OTf](2)), 2,2'-bipyridyl (bpy) (3·[OTf](2)), N,N,N'N'-tetramethylethylenediamine (4·[OTf](2)). Anion metathesis of 3·[OTf](2) with HPF(6) and HBF(4) gave 3·[PF(6)](2) and 3·[BF(4)](2), respectively. Similarly, the PF(6)(-) salt 4·[PF(6)](2) was prepared by the reaction of 4·[OTf](2) with HPF(6). The irradiation of [L(OEt)Ru(NO)Cl(2)] (1) with UV light in CH(2)Cl(2)-MeCN and tetrahydrofuran (thf)-H(2)O afforded [L(OEt)RuCl(2)(MeCN)] (5) and the chloro-bridged dimer [L(OEt)RuCl](2)(μ-Cl)(2) (6), respectively. The photolysis of complex [2][OTf](2) in MeCN gave [L(OEt)Ru(dtbpy)(MeCN)][OTf](2) (7). Refluxing complex 5 with RNH(2) in thf gave [L(OEt)RuCl(2)(NH(2)R)] (R = tBu (8), p-tol (9), Ph (10)). The oxidation of complex 6 with PhICl(2) gave [L(OEt)RuCl(3)] (11), whereas the reduction of complex 6 with Zn and NH(4)PF(6) in MeCN yielded [L(OEt)Ru(MeCN)(3)][PF(6)] (12). The reaction of 3·[BF(4)](2) with benzylamine afforded the μ-dinitrogen complex [{L(OEt)Ru(bpy)}(2)(μ-N(2))][BF(4)](2) (13) that was oxidized by [Cp(2)Fe]PF(6) to a mixed valence Ru(II,III) species. The formal potentials of the RuL(OEt) complexes have been determined by cyclic voltammetry. The structures of complexes 5,6,10,11 and 13 have been established by X-ray crystallography.  相似文献   

19.
Silica gel bearing isonicotinamide groups was prepared by further modification of 3-aminopropyl-functionalized silica by a reaction with isonicotinic acid and 1,3-dicyclohexylcarbodiimide to yield 3-isonicotinamidepropyl-functionalized silica gel (ISNPS). This support was characterized by means of infrared spectroscopy, elemental analysis, and specific surface area. The ISNPS was used to immobilize the [Ru(NH(3))(4)SO(3)] moiety by reaction with trans-[Ru(NH(3))(4)(SO(2))Cl]Cl, yielding [Si(CH(2))(3)(isn)Ru(NH(3))(4)(SO(3))]. The related immobilized [Si(CH(2))(3)(isn)Ru(NH(3))(4)(L)](3+/2+) (L=SO(2), SO(2-)(4), OH(2), and NO) complexes were prepared and characterized by means of UV-vis and IR spectroscopy, as well as by cyclic voltammetry. Syntheses of the nitrosyl complex were performed by reaction of the immobilized ruthenium ammine [Si(CH(2))(3)(isn)Ru(NH(3))(4)(OH(2))](2+) with nitrite in acid or neutral (pH 7.4) solution. The similar results obtained in both ways indicate that the aqua complex was able to convert nitrite into coordinated nitrosyl. The reactivity of [Si(CH(2))(3)(isn)Ru(NH(3))(4)(NO)](3+) was investigated in order to evaluate the nitric oxide (NO) release. It was found that, upon light irradiation or chemical reduction, the immobilized nitrosyl complex was able to release NO, generating the corresponding Ru(III) or Ru(II) aqua complexes, respectively. The NO material could be regenerated from these NO-depleted materials obtained photochemically or by reduction. Regeneration was done by reaction with nitrite in aqueous solution (pH 7.4). Reduction-regeneration cycles were performed up to three times with no significant leaching of the ruthenium complex.  相似文献   

20.
The trans-[Ru(NO)(NH(3))(4)(P(OH)(3))]Cl(3) complex was synthesized by reacting [Ru(H(2)O)(NH(3))(5)](2+) with H(3)PO(3) and characterized by spectroscopic ((31)P-NMR, δ = 68 ppm) and spectrophotometric techniques (λ = 525 nm, ε = 20 L mol(-1) cm(-1); λ = 319 nm, ε = 773 L mol(-1) cm(-1); λ = 241 nm, ε = 1385 L mol(-1) cm(-1); ν(NO(+)) = 1879 cm(-1)). A pK(a) of 0.74 was determined from infrared measurements as a function of pH for the reaction: trans-[Ru(NO)(NH(3))(4)(P(OH)(3))](3+) + H(2)O ? trans-[Ru(NO)(NH(3))(4)(P(O(-))(OH)(2))](2+) + H(3)O(+). According to (31)P-NMR, IR, UV-vis, cyclic voltammetry and ab initio calculation data, upon deprotonation, trans-[Ru(NO)(NH(3))(4)(P(OH)(3))](3+) yields the O-bonded linkage isomer trans- [Ru(NO)(NH(3))(4)(OP(OH)(2))](2+), then the trans-[Ru(NO)(NH(3))(4)(OP(H)(OH)(2))](3+) decays to give the final products H(3)PO(3) and trans-[Ru(NO)(NH(3))(4)(H(2)O)](3+). The dissociation of phosphorous acid from the [Ru(NO)(NH(3))(4)](3+) moiety is pH dependent (k(obs) = 2.1 × 10(-4) s(-1) at pH 3.0, 25 °C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号