Methane, CH4, here represents natural gas (NG) of which it is the main constituent. Routes ofchemical utilisation of NG — as opposed to energy usage — are discussed. A main step is the conversion of NG to synthesis gas, a mixture of CO and H2. Simple molecules derived from synthesis gas, like methanol,can be further reacted to longer-chained hydrocarbons like propylene and other olefins and even to gasoline and diesel. 相似文献
A method for multiconformational modeling of the threedimensional shape of a molecule is proposed that includes search for conformers, their optimum superposition, and analysis of spatial features of the resulting structure. The method allows one to determine features of various molecular conformations of compounds under study, to assess the contributions of conformers to particular properties of the substance, to evaluate the space occupied by the molecule, and to compare the average size of the multiconformational model of the molecule with the sizes of the most stable conformations. The potentials of the model are illustrated by density calculations for 137 organic liquids. 相似文献
Singlet oxygen is known to be a potent mutagenic agent and several biologically relevant molecules have been proposed to act as scavengers for this noxious species. However, numerous studies have been conducted in homogenous solution and the reactivity of singlet oxygen scavengers known to bind DNA has never been investigated in double-stranded DNA. In the following paper, we present the results obtained regarding the interaction between 4',6-diamidino-2-phenylindole (DAPI) and singlet oxygen. We show the molecule to be a potent scavenger of singlet oxygen in aqueous solution with an absolute rate constant (chemical and physical quenching of singlet oxygen) of (1.7 ± 0.3) × 107 m −1 s−1. In addition, we demonstrate that the binding mode of a singlet oxygen scavenger to DNA can strongly influence its reactivity toward singlet oxygen. In the case of DAPI, while the molecule exhibits a chemical reaction with singlet oxygen when the molecule is free in aqueous solution or intercalated in GC sequences of DNA, DAPI becomes chemically unreactive toward singlet oxygen when bound in the minor groove of DNA AT sequences. 相似文献
It has been suggested that pyridine and pyrrole could be patterns for imidazole reactivity studies due to the amine (-NH-) and aza (-N═) nitrogen atoms. The analyses of the local and global electronic indexes prove and quantify that imidazole has an intermediate analogy between pyrrole and pyridine. 相似文献
Recycling of “green” solvents : Recycling of ionic liquids with high efficiency is of key importance on going from the laboratory‐scale to large‐scale industrial application of these solvents.
Four derivatives of 5,5',6,6'-tetrachlorobenzimidazolocarbocyanine iodide with different long alkyl chain substituents in N-position of polymethine chromophore have been used for investigating the influence of hydrophobicity of dyes on the aggregation.It has been found that all dyes formed monomeric species in methyl alcohol. However, after addition of water to CH_3OH to change the polarity of the solvent, difference between dyes appeared.Addition of inorganic salt facilitated the J-aggregation of easy soluble dye, but it seems useless for the sparely soluble dye.Platelets cut from AgBr polycrystal or pressed AgBr powder have been used as substrate for adsorbing dyes. After addition of hexanoic acid, eventually the J-aggregate on AgBr surface could be destroyed.Voltammetry is a useful tool to investigate the interaction between dyes and AgBr. Experimental results showed that the longer the carbon chain substituents is, the stronger the interaction between AgBr and dyes would be. 相似文献
Polarity studies in two classes of imidazolium-based protic ionic liquids (PILs) possessing [HSO(4)](-), [HCOO](-), [CH(3)COO](-) and [CH(3)CH(2)COO](-) anions were carried out using a solvatochromic method from 298.15 to 353.15 K. For 1-methylimidazolium class of PILs, E(T)(30) was found to be independent over the entire range of temperature, while E(T)(30) was noted to decrease with a rise in temperature in the case of 1-butylimidazolium class of PILs containing [CH(3)COO](-) and [CH(3)CH(2)COO](-) anions. The E(T)(30) value decreases in both the classes upon varying the anions ([HSO(4)](-), [HCOO](-), [CH(3)COO](-) and [CH(3)CH(2)COO](-)). The E(T)(30) value is controlled by hydrogen bond acceptor basicity, β, and dipolarity/polarizability, π*. The E(T)(30) value for PILs varies inversely to the strength of the coulombic interaction between ions in PILs. Strong interactions between ions lead to lower E(T)(30) values. Unlike the poor thermal effect on E(T)(30), the Kamlet-Taft parameters i.e. α, β and π* have pronounced thermal effect in the imidazolium-based PILs. Variation in the Kamlet-Taft parameters is controlled by the stabilization of ions and the degree of proton transfer from Br?nsted acid to Br?nsted base. 相似文献
Don't rewrite the textbooks! Vibrational spectra of a selectively deuterated derivative of phenanthrene indicate that the C4H???HC5 interaction in its “bay” area should be interpreted as steric (Pauli) repulsion. These findings and the results of theoretical analysis are in conflict with interpretations that describe this interaction as strongly stabilizing.
The detection and characterization of trapped water molecules in chemical entities and biomacromolecules remains a challenging task for solid materials. We herein present proton-detected solid-state Nuclear Magnetic Resonance (NMR) experiments at 100 kHz magic-angle spinning and at high static magnetic-field strengths (28.2 T) enabling the detection of a single water molecule fixed in the calix[4]arene cavity of a lanthanide complex by a combination of three types of non-covalent interactions. The water proton resonances are detected at a chemical-shift value close to zero ppm, which we further confirm by quantum-chemical calculations. Density Functional Theory calculations pinpoint to the sensitivity of the proton chemical-shift value for hydrogen-π interactions. Our study highlights how proton-detected solid-state NMR is turning into the method-of-choice in probing weak non-covalent interactions driving a whole branch of molecular-recognition events in chemistry and biology. 相似文献
Neutrals CCCO, CC(13)CO, CCCS and CC(13)CS have been prepared by one-electron vertical (Franck-Condon) oxidation of the precursor anion radicals (CCCO)(-*), (CC(13)CO)(-*), (CCCS)(-*) and (CC(13)CS)(-*)respectively in collision cells of a reverse sector mass spectrometer. Ionisation of the neutrals to decomposing cations shows the neutrals to be stable for the microsecond duration of the neutralisation-ionisation ((-)NR(+)) experiment. No rearrangement of the label in energised CC(13)CO or CC(13)CS occurs during these experiments. In contrast, minor rearrangement of (CC(13)CO)(+*) is observed [(CC(13)CO)(+*)-->(OCC(13)C)(+*), while significant rearrangement occurs for (CC(13)CS)(+*) [(CC(13)CS)(+*)-->(SCC(13)C)(+*)]. Theoretical calculations at the CCSD(T)/aug-cc-pVDZ//B3LYP/6-31G(d) level of theory show that the cationic rearrangements occur by stepwise processes via key rhombic structures. Overall, the degenerate processes result in O and S migration from C-3 to C-1. The cations (CCCO)(+*) and (CCCS)(+*) require excess energies of > or = 516 and > or = 226 kJ mol(-1) respectively to effect rearrangement. 相似文献