首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 613 毫秒
1.
I present a new protocol for three-party quantum secure direct communication (QSDC) with a set of ordered M Einstein-Podolsky-Rosen (EPR) pairs. In the scheme, by performing two unitary operations and Bell state measurements, it is shown that the three legitimate parties can exchange their respective secret message simultaneously. Then I modify it for an experimentally feasible and secure quantum sealed-bid auction (QSBD) protocol. Furthermore, I also analyze th~ecurity of the protocol, and the scheme is proven to be secure against the intercept-and-resend attack, the disturbancb attack and the entangled-and-measure attack.  相似文献   

2.
By swapping the entanglement of genuine four-particle entangled states, we propose a bidirectional quantum secure communication protocol. The biggest merit of this protocol is that the information leakage does not exist. In addition, the ideas of the "two-step" transmission and the block transmission are employed in this protocol. In order to analyze the security of the second sequence transmission, decoy states are used.  相似文献   

3.
We propose two schemes for quantum secure direct communication (QSDC) and deterministic secure quantum communication (DSQC) over collective dephasing noisy channel. In our schemes, four special two-qubit states are used as the quantum channel. Since these states are unchanged through the collective dephasing noisy channel, the effect of the channel noise can be perfectly overcome. Simultaneously, the security against some usual attacks can be ensured by utilizing the various checking procedures. Furthermore, these two schemes are feasible with present-day technique.  相似文献   

4.
A theoretical quantum communication scheme based on entanglement swapping and superdense coding is proposed with a 3-dimensional Bell state and 2-dimensional Bell state function as quantum channel, quantum key distribution and quantum secure direct communication can be simultaneously accomplished in the scheme. The scheme is secure and has high source capacity. At last, we generalize the quantum communication scheme to d-dimensional quantum channel  相似文献   

5.
A quantum secure direct intercommunication scheme is proposed to exchange directly the communicators' secret messages by making ase of swapping entanglement of Bell states. It has great capacity to distribute the secret messages since these messages have been imposed on high-dimensional Bell states via the local unitary operations with superdense coding. The security is ensured by the secure transmission of the travel sequences and the application of entanglement swapping.  相似文献   

6.
We present a scheme for quantum secure direct communication, in which the message is encoded by local unitary operations, transmitted through entangled photons, and deduced from both the sender and receiver's local measurement results. In such a scheme, only one pair of entangled photons is consumed, and there is no need to transmit the sender's qubit carrying the secret message in a public channel, in order to transmit two-bit classical information.  相似文献   

7.
Based on x-type entangled states and the two-step protocol [Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317], a quantum secret sharing protocol of secure direct communication based on x-type entangled states |X00〉3214 is proposed. Using some interesting entanglement properties of this state, the agent entirety can directly obtain the secret message from the message sender only if they collaborate together. The security of the scheme is also discussed.  相似文献   

8.
杨静  王川  张茹 《理论物理通讯》2010,(11):829-834
In this paper we propose two quantum secure direct communication (QSDC) protocols with authentication. The authentication key expansion method is introduced to improve the life of the keys with security. In the first scheme, the third party, called Trent is introduced to authenticate the users that participate in the communication. He sends the polarized photons in blocks to authenticate communication parties Alice and Bob using the authentication keys. In the communication process, polarized single photons are used to serve as the carriers, which transmit the secret messages directly. The second QSDC process with authentication between two parties is also discussed.  相似文献   

9.
A quantum secure direct communication scheme using dense coding is proposed. At first, the sender (Alice) prepares four-particle genuine entangled states and shares them with the receiver (Bob) by sending two particles in each entangled state to him. Secondly, Alice encodes secret information by performing the unitary transformations on her particles and transmits them to Bob. Finally, Bob performs the joint measurements on his particles to decode the secret information. The two-step security test guarantees the security of communication.  相似文献   

10.
Two Avowable Quantum Communication Schemes   总被引:1,自引:0,他引:1  
Two avowable quantum communication schemes are proposed. One is an avowable teleportation protocol based on the quantum cryptography. In this protocol one teleports a set of one-particle states based on the availability of an honest arbitrator, the keys and the Einstein Podolsky-Rosen pairs shared by the communication parties and the arbitrator. The key point is that the fact of the teleportation can neither be disavowed by the sender nor be denied by the receiver. Another is an avowable quantum secure direct communication scheme. A one-way Hash function chosen by the communication parties helps the receiver to validate the truth of the information and to avoid disavowing for the sender.  相似文献   

11.
We propose a quantum secure communication protocol by using three-particle GHZ states. In this protocol, we utilize the ideas of the rearranging orders and the sequence transmission. The sender of messages, Alice, first disturbs the particle orders in an initial sequence, and then sends the sequence of the disturbed orders to the receiver of messages, Bob. Under Alice's introduction, Bob rearranges the sequence back to the initial sequence. By making a GHZ state measurement on each of the three particles in turn, Bob can attain Alice's secret messages. In addition, we still calculate the efficiency of our three-particle GHZ protocol and generalize it to the case using multi-particle GHZ state.  相似文献   

12.
We present an efficient scheme for sharing an arbitrary m-qubit state with n agents. In our scheme, the sender Alice first shares m Bell states with the agent Bob, who is designated to recover the original m-qubit state. Furthermore, Alice introduces n- 1 auxiliary particles in the initial state |0), applies Hadamard (H) gate and Controlled-Not (CNOT) gate operations on the particles, which make them entangled with one of m particle pairs in Bell states, and then sends them to the controllers (i.e., other n - 1 agents), where each controller only holds one particle in hand. After Alice performing m Bell-basis measurements and each controller a single-particle measurement, the recover Bob can obtain the original unknown quantum state by applying the corresponding local unitary operations on his particles. Its intrinsic efficiency for qubits approaches 100%, and the total efficiency really approaches the maximal value.  相似文献   

13.
We propose schemes to prepare n-atom Greenberger-Horn-Zeilinger (GHZ) state via two-sided cavities interacting with single-photon pulses, and achieve quantum state transfer (QST) from one atom to another atom. Entanglement particle pair and the control of coupling between qu bits are of no need in the QST process. Some practical quantum noises only decrease the success probabilities of the schemes but have no influence on the fidelity of prepared state. In addition, the success probabilities of our schemes are close to unity in the ideal case.  相似文献   

14.
It has been shown that a quantum state could be perfectly transferred via a spin chain with engineered "always-on interaction". In this paper, we study a more realistic problem for such a quantum state transfer (QST) protocol, how the efficacy of QST is reduced by the quantum decoherence induced by a spatially distributed environment. Here, the environment is universally modeled as a bath of fermions located in different positions. By making use of the irreducible tensor method in angular momentum theory, we investigate the effect of environment on the efficiency of QST for both cases at zero and finite temperatures. We not only show the generic exponential decay of QST efficiency as the number of sites increase, but also find some counterintuitive effect, the QST can be enhanced as temperature increases in some cases.  相似文献   

15.
Although the multi-level structure of superconducting qubits may result in calculation errors, it can be rationally used to effectively improve the speed of gate operations. Utilizing a current-biased Josephson junction (A-type rf-SQUID) as a tunable coupler for superconducting transmission line resonators (TLRs), under the large detuning condition, we demonstrate the controllable generation of entangled coherent states in circuit quantum electrodynamics (circuit QED). The coupling between the TLRs and the qubit can be effectively regulated by an external bias current or coupling capacitor. Further investigations indicate that the maximum entangled state can be obtained through measuring the excited state of the superconducting qubits. Then, the influence of the TLR [tecay on the prepared entangled states is analyzed.  相似文献   

16.
An experimentally feasible scheme for generalized quantum state sharing of an arbitrary unknown single- qubit state in cavity QED is presented. Using a generalized Greenberger-Horne-Zeilinger (GHZ) state as the quantum channel among the three parties, the quantum information (i.e. the single-qubit state) from the sender can be split in such a way that the information can be recovered if and only if both receivers collaborate. Moreover, the scheme is insensitive to both the effects of thermal field and cavity decay.  相似文献   

17.
We investigate the generation of entanglement of coherent excitonic states in coupled quantum dots placed in a cavity by meaning of the state preparation fidelity [Nature (London) 404 (2002) 256; Phys. Rev. A 65 (2002) 012107; J. Uffink, Phys. Rev. Lett. 88 (2002) 230406.] The effect of the number of excitons and the coherent intensity |α| of the cavity field on the entanglement is also studied.  相似文献   

18.
A three-party scheme for splitting an arbitrary unknown two-qutrit state is proposed, where two nonmaximally-entangled three-qutrit states are taken as the quantum channel among three parties. With the sender's help, if and only if both receivers collaborate together, they can securely share the quantum state in a probabilistic way by introducing an ancilla qutrit and performing appropriate unitary operations. The relation between the success probability and coefficients characterizing the quantum channel is revealed. The security of the present scheme is analyzed and confirmed. Moreover, the generalization of the three-party scheme to more-party case is also sketched.  相似文献   

19.
We present a scheme for remotely preparing a state via the controls of many agents in a network. In the scheme, the agents' controls are achieved by utilizing quantum key distribution. Generally, the original state can be restored by the receiver with probability 1/2 if all the agents collaborate. However, for certain type of original states the restoration probability is unit.  相似文献   

20.
<正>We present a theoretical study of quantum coherent effects in a A-three-level system with a strong bichromatic coupling field and a weak probe field.When one component of the strong bichromatic coupling field is resonant with a corresponding transition and the other is detuning with an integer fraction of the Rabi frequency of the resonant field, the absorption spectrum exhibits a series of symmetrical doublets.While two frequencies of the strong bichromatic coupling field are symmetrically detuned from the transition,the position and the relative intensity of the absorption peak are both affected by the coupling field intensity and detuning.An explanation of the spectrum is given in term of the dressed-state formalism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号