首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanisms of silk fibroin sol-gel transitions   总被引:2,自引:0,他引:2  
Silk fibroin sol-gel transitions were studied by monitoring the process under various physicochemical conditions with optical spectroscopy at 550 nm. The secondary structural change of the fibroin from a disordered state in solution to a beta-sheet-rich conformation in the gel state was assessed by FTIR and CD over a range of fibroin concentrations, temperatures, and pH values. The structural changes were correlated to the degree of gelation based on changes in optical density at 550 nm. No detectable changes in the protein secondary structure (FTIR, CD) were found up to about 15% gelation (at 550 nm), indicating that these early stages of gelation are not accompanied by the formation of beta-sheets. Above 15%, the fraction of beta-sheet linearly increased with the degree of gelation. A pH dependency of gelation time was found with correlation to the predominant acidic side chains in the silk. Electrostatic interactions were related to the rate of gelation above neutral pH. The overall independencies of processing parameters including concentration, temperature, and pH on gel formation and protein structure can be related to primary sequence-specific features in the molecular organization of the fibroin protein. These findings clarify aspects of the self-assembly of this unique family of proteins as a route to gain control of material properties, as well as for new insight into the design of synthetic silk-biomimetic polymers with predictable solution and assembly properties.  相似文献   

2.
The relation between the self-diffusion coefficient, Dself, of water and the free volume hole size, Vh, has been investigated in a hydroxypropyl methylcellulose (HPMC)-water system in the water content range 0.08-0.36 w/w, at room temperature. Furthermore, the thermal properties of the water in the HPMC-water system, as measured with differential scanning calorimetry (DSC) and the tensile storage, E′, and tensile loss, E″, moduli, of the HPMC-water systems, as determined with dynamic mechanical analysis (DMA), have been probed. Pulsed-field gradient nuclear magnetic resonance (PFG NMR) was used to measure the Dself of water and positron annihilation lifetime spectroscopy (PALS) was used to measure the ortho-Positronium (o-Ps) lifetime in the HPMC-water system. The glass transition temperature of the HPMC was found to be reduced by the water to room temperature in the water content range 0.10-0.15 w/w. The relation between ln Dself of water and the inverse free volume hole size of the HPMC-water system was non-linear. Furthermore, the PALS measurements showed that molecular water co-existed with water clusters in the HPMC-water system.  相似文献   

3.
Azobenzene moiety-containing methylcellulose (AB-MC) was prepared, the changes of the cloud point of its aqueous solutions as a thermotropic sol-gel transformation behaviour were investigated under irradiation with UV light. AB-MC's with degrees of substitution by the azobenzene moiety DSAB > 2,5 · 10-2 were insoluble in water. The azobenzene moiety in the AB-MC was confirmed to be reversibly isomerized from the trans- to the cis-form under irradiation with UV light of wavelengths 390 > λ > 310 nm and from the cis-to the trans-form under irradiation with visible light of λ > 400 nm. The cloud point value of the aqueous solution of AB-MC increased under irradiation with UV light of 390 > λ > 310 nm for the AB-MC's with a DSAB value in a certain range and the extent of the increase in the cloud point value was higher at higher concentrations of AB-MC.  相似文献   

4.
杨海洋 《高分子科学》2013,31(2):263-274
The sol-gel transition of methylcellulose (MC) solutions in the presence of ortho-methoxycinnamic acid (OMCA) or cetyltrimethylammonium bromide (CTAB) and in the coexistence of OMCA and CTAB was determined by the rheological measurement. It has been found that the sol-gel transition temperature of MC solutions increases linearly with the concentration of either OMCA or CTAB in solution, respectively. However, in the coexistence of OMCA and CTAB, the sol-gel transition temperature of MC solutions remains invariable, independent of the concentration of CTAB in solution. The experimental results show that OMCA has priority to adsorb on the methyl group of MC chains to form polymer-bound aggregates. In particular, these aggregates inhibit the hydrophobic interaction between CTAB and the methyl group of MC chains completely. Taking into account the fact that OMCA is almost insoluble in MC-free solutions but dissolves very well in aqueous MC solutions, we propose the formation of the core-shell architecture prompted by OMCA and the methyl group of MC chains, with the methyl group of MC chains serving as the core and the self-assembly of OMCA molecules serving as the shell. Obviously, the formation of the core-shell structure increases the solubility of OMCA, improves the stability of methyl groups of MC chains at high temperatures and inhibits the hydrophobic interaction between CTAB and the methyl group of MC chains in solution. The abnormal behavior relating to the sol-gel transition of MC solutions in the presence of OMCA or in the coexistence of OMCA and CTAB is therefore explained. Upon UV irradiation, the sol-gel transition temperature of MC solutions in the presence of OMCA, or in the coexistence of OMCA and CTAB, decreases notably. However, the dependence of the sol-gel transition temperature of MC solutions as a function of OMCA concentration, or CTAB concentration in the presence of OMCA, does not change after UV irradiation.  相似文献   

5.
Fast scanning calorimetry (FSC) was employed to investigate glass softening dynamics in bulk-like and ultrathin glassy water films. Bulk-like water samples were prepared by vapor-deposition on the surface of a tungsten filament near 140 K where vapor-deposition results in low enthalpy glassy water films. The vapor-deposition approach was also used to grow multiple nanoscale (approximately 50 nm thick) water films alternated with benzene and methanoic films of similar dimensions. When heated from cryogenic temperatures, the ultrathin water films underwent a well manifested glass softening transition at temperatures 20 K below the onset of crystallization. However, no such transition was observed in bulk-like samples prior to their crystallization. These results indicate that thin-film water demonstrates glass softening dynamics that are dramatically distinct from those of the bulk phase. We attribute these differences to water's interfacial glass transition, which occurs at temperatures tens of degrees lower than that in the bulk. Implications of these findings for past studies of glass softening dynamics in various glassy water samples are discussed.  相似文献   

6.
Han  Wei  Liu  Kailang  Yang  Sanjun  Wang  Fakun  Su  Jianwei  Jin  Bao  Li  Huiqiao  Zhai  Tianyou 《中国科学:化学(英文版)》2019,62(10):1300-1311
Two-dimensional(2D) materials with atomic thickness are promising candidates for the applications in future semiconductor devices, owing to their fascinating physical properties and superlative optoelectronic performance. Chemical vapor deposition(CVD) is considered to be an efficient method for large-scale preparation of 2D materials toward practical applications.However, the high melting points of metal precursors and the thermodynamics instabilities of metastable phases limit the direct CVD synthesis of plenty of 2D materials. The salt has recently been introduced into the CVD process, which proved to be effective to address these issues. In this review, we highlighted the latest progress in the salt-assisted CVD growth of 2D materials, including layered and non-layered crystals. Firstly, strategies of adding salts are summarized. Then, the salt-assisted growth of various layered materials is presented, emphasizing on the transition metal chalcogenides of stable and metastable phases. Furthermore, strategies to grow ultrathin non-layered materials are discussed. We provide viewpoints into the techniques of using salt, the effects of salt, and the growth mechanisms of 2D crystals. Finally, we offer the challenges to be overcome and further research directions of this emerging salt-assisted CVD technique.  相似文献   

7.
A collaborative study was performed to determine the reproducibility of a method for the determination of methylcellulose (MC) and hydroxypropyl methylcellulose (HPMC) in food. These widely used food gums possess unusual solubility characteristics and cannot accurately be determined by existing dietary fiber methods. The new method uses the enzyme-digestion procedure of AOAC Official Method 991.43. Digestate solutions must be refrigerated to fully hydrate MC or HPMC. The chilled solutions are filtered and analyzed by size-exclusion liquid chromatography. Collaborating laboratories received 28 samples containing MC or HPMC in the range of 0-100%. The sample set included blind duplicates of 5 food matrixes (bread, milk, fish, potato, and powdered juice drink). Cochran and Grubbs tests were used to eliminate outliers. For food samples containing MC, values for within-laboratory precision, repeatability relative standard deviation (RSDr), ranged from 4.2 to 16%, and values for among-laboratories precision, reproducibility relative standard deviation (RSDR), ranged from 11 to 20%. For HPMC samples, RSDr values ranged from 6.4 to 27%, and RSDR values ranged from 17 to 39%. Recoveries of MC and HPMC from the food matrixes ranged from 78 to 101%. These results show acceptable precision and reproducibility for the determination of MC and HPMC, for which no Official AOAC Methods exist. It is recommended that this method be adopted as AOAC Official First Action.  相似文献   

8.
9.
Electrospun nanofibrous membranes (ENMs) are considered as a state of the art in water filtration technology mainly owing to their high interconnected porosity and tunable pore size assumed to offer a very high permeability also selectivity. However, the extremely high surface area makes the ENMs prone to mechanical breakdown and lack of wettability lowering the filtration efficiency. Hence, any attempt to enhance both the mechanical properties and hydrophilicity of the ENMs is highly recommended. In the current study, the structural and transport properties of polyethersulfone (PES) ENMs were modified through incorporation of titania (TiO(2)) nanoparticles via a sol-gel approach. Presence of titania precursor increased the conductivity of the electrospun solution thereby optimized the structural features of the electrospun mat in terms of formation of very thin beadless nanofibers, a higher porosity and smaller pore size. Moreover, a significant rise in mechanical properties, thermal stability and switching from a highly hydrophobic membrane to a superhydrophilic one occur simultaneously. The combination of a more optimum porosity, very high mechanical properties and hydrophilicity leads to a significantly higher water permeability in the TiO(2)/PES ENMs encouraging us to propose it as a water filtration membrane with longer life span and lower energy consumption.  相似文献   

10.
11.
The structural changes in methylcellulose containing poly(ethylene glycol) (PEG 400) as plasticizer caused by water absorption during storage were evaluated. In order to elucidate the structural changes in the polymer, water‐uptake measurements and positron annihilation lifetime spectroscopy (PALS) were utilized. The PEG concentrations relative to the total polymer content were varied within the range 0–75% w/w. The Doppler‐spectra were characterized by means of the conventional parameters S and W. A transition from a single phase to two phases was found in the methylcellulose films above PEG; a content of 33% w/w. The first step of ageing is merely a conformational change, after which the electron structure remains more or less the same, while both S and W indicate significant changes during the second slow step of ageing. Accurate determination of the plasticizer concentration relating to the single‐phase to two‐phase transition of Metolose‐PEG films has a great impact from the aspect of the application of a stable composition for coating of solid dosage forms. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
The current work makes use of different fluorescent reporter molecules and fluorescent spectroscopic techniques to characterize the thermotropic, physical, and dynamical properties of large unilamellar liposomes formed from either 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-glycerol] (DMPG) encapsulated in sol-gel matrixes. In particular, cooperativity of the phase transition is analyzed from steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH), the interfacial properties are studied by measuring the spectral shift of Laurdan, and the structural organization (heterogeneity) of the lipid bilayer is determined from the fluorescence lifetime of trans-parinaric acid (t-PnA). In addition, information regarding order and dynamical properties in the bulk hydrophobic core is obtained from time-resolved fluorescence anisotropy of t-PnA and 3-(4-(6-phenyl)-1,3,5-hexatrienyl)-phenylpropionic acid (PA-DPH). The spectroscopic study reveals that upon encapsulation, the basic thermodynamic properties as well as the fluidity of the lipid bilayer practically remain intact for DMPG liposomes but not for DMPC liposomes, whose lipid bilayer exhibits large gel-fluid heterogeneity. On the basis of these experimental results, electrostatic interactions between phospholipid polar heads and the porous surface of the host matrix seem to play a capital role for the preservation of the structural integrity of encapsulated bilayer.  相似文献   

13.
The heat capacities of cattle and poultry collagen samples were measured by adiabatic calorimetry in the range 80–330 K. The temperatures of physical transitions in these samples were determined. Endothermic relaxation transitions (γ1, γ2, and β) were observed in the heat capacity curves of the studied collagen samples. The solubility of water in collagen samples obtained from various sources was determined by calorimetry from the enthalpy of melting of the “free” water phase.  相似文献   

14.
We have calculated vertical excitation energies and oscillator strengths of the low lying electronic transitions in H2O, NH3, and H2ONH3 using a hierarchy of coupled cluster response functions [coupled cluster singles (CCS), second order approximate coupled cluster singles and doubles (CC2), coupled cluster singles and doubles (CCSD), and third order approximate coupled cluster singles, doubles, and triples (CC3)] and correlation consistent basis functions (n-aug-cc-pVXZ, where n=s,d,t and X=D,T,Q). Our calculations indicate that significant changes in the absorption spectra of the photodissociative states of H2O and NH3 monomers occur upon complexation. In particular, we find that the electronic transitions originating from NH3 are blueshifted, whereas the electronic transitions originating from H2O are redshifted.  相似文献   

15.
Types of surface forces determining the disjoining pressure isotherms of wetting films of low-molecular-weight alkanes on water surface are discussed. The van der Waals forces in alkane interlayers at different temperatures were calculated using a combination of exact equations of the Dzyaloshinsky—Lifshitz—Pitaevsky macroscopic theory and the multi-oscillator model for representation of the dielectric permittivity spectra of contacting bodies. Taking account of competitive action of the van der Waals and image forces allows one not only to reproduce specific features of wetting in the systems studied at different temperatures, but also to describe quantitatively the contact angles and the experimentally observed isotherms of polymolecular adsorption. The experimentally detected wetting transition in the water—pentane—vapor system was rationalized using the results of calculations mentioned above and the Derjaguin—Frumkin theory of wetting. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 256–266, February, 2008.  相似文献   

16.
We have calculated the band profiles of the OH-stretching fundamental and overtone transitions in the proton donor unit of the water dimer complex. We have used a local mode Hamiltonian that includes both OH-stretching and OO-stretching motion but separates these adiabatically. The variation of OH-stretching frequency and anharmonicity with OO displacement from equilibrium contributes to the effective OO-stretching potentials for each OH-stretching state. The resulting OO-stretching energy levels and wave functions are used to simulate the vibrational profile of each OH-stretching transition. The coupled cluster with singles, doubles, and perturbative triples ab initio method with an augmented triple-zeta correlation consistent basis set has been used to obtain the necessary parameters, potentials, and dipole moment functions. We find that the OO-stretching transitions associated with a given hydrogen bonded OH-stretching transition are spread significantly and this spread increases with overtone. The spread is minor for the free OH-stretching transition. The inclusion of the OO-stretching mode has a limited effect on the overall OH-stretching band intensity.  相似文献   

17.
Liquid-liquid and liquid-vapor coexistence regions of various water models were determined by Monte Carlo (MC) simulations of isotherms of density fluctuation-restricted systems and by Gibbs ensemble MC simulations. All studied water models show multiple liquid-liquid phase transitions in the supercooled region: we observe two transitions of the TIP4P, TIP5P, and SPCE models and three transitions of the ST2 model. The location of these phase transitions with respect to the liquid-vapor coexistence curve and the glass temperature is highly sensitive to the water model and its implementation. We suggest that the apparent thermodynamic singularity of real liquid water in the supercooled region at about 228 K is caused by an approach to the spinodal of the first (lowest density) liquid-liquid phase transition. The well-known density maximum of liquid water at 277 K is related to the second liquid-liquid phase transition, which is located at positive pressures with a critical point close to the maximum. A possible order parameter and the universality class of liquid-liquid phase transitions in one-component fluids are discussed.  相似文献   

18.
The state of water and several transitions were examined in the systemsn-decanephosphonic acid (DPA)—water and the sodium salts of DPA—water. Temperature — composition phase diagrams are reported. The results show that several liquid crystalline phases plus isotropic liquid, and two solid phases (a waxy solid phase and a crystalline phase) are formed. Several types of water were detected: bulk-like water, interfacial water and hydration water. This work was supported by the Consejo Nacional de Ciencia y Technología de México (grant # 3319-E) and by the Consejo Nacional de Investigaciones Científicas y Técnicas de la República de Argentina.  相似文献   

19.
Nonwoven fiber mats of hydroxypropyl methylcellulose trimellitate(HPMCT) with potential applications in controlled delivery of drugs and scaffolds for tissue cultures have been successfully fabricated by electrospinning of HPMCT solutions.The formation and diameters of HPMCT fibers fabricated by electrospinning were strongly influenced by the solvents employed,electrostatic field strength,and solution concentrations.The electrospun products generated from all HPMCT solutions with various weight-average mole...  相似文献   

20.
Journal of Thermal Analysis and Calorimetry - We report the experimental studies of phase transitions in [xH2O + (1 − x) C7H16] system with...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号