首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Ultrasound-targeted microbubble destruction (UTMD) technique can be potentially used for non-viral delivery of gene therapy. Targeting wild-type p53 (wtp53) tumor suppressor gene may provide a clinically promising treatment for patients with ovarian cancer. However, UTMD mediated gene therapy typically uses non-targeted microbubbles with suboptimal gene transfection efficiency. We synthesized a targeted microbubble agent for UTMD mediated wtp53 gene therapy in ovarian cancer cells. Lipid microbubbles were conjugated with a Luteinizing Hormone–Releasing Hormone analog (LHRHa) via an avidin–biotin linkage to target the ovarian cancer A2780/DDP cells that express LHRH receptors. The microbubbles were mixed with the pEGFP-N1-wtp53 plasmid. Upon exposure to 1 MHz pulsed ultrasound beam (0.5 W/cm2) for 30 s, the wtp53 gene was transfected to the ovarian cancer cells. The transfection efficiency was (43.90 ± 6.19)%. The expression of wtp53 mRNA after transfection was (97.08 ± 12.18)%. The cell apoptosis rate after gene therapy was (39.67 ± 5.95)%. In comparison with the other treatment groups, ultrasound mediation of targeted microbubbles yielded higher transfection efficiency and higher cell apoptosis rate (p < 0.05). Our experiment verifies the hypothesis that ultrasound mediation of targeted microbubbles will enhance the gene transfection efficiency in ovarian cancer cells.  相似文献   

2.
Sonoporation—transient plasma membrane perforation elicited by the interaction of ultrasound waves with microbubbles—has shown great potential for drug delivery and gene therapy. However, the heterogeneity of sonoporation introduces complexities and challenges in the realization of controllable and predictable drug delivery. The aim of this investigation was to understand how non-acoustic parameters (bubble related and bubble-cell interaction parameters) affect sonoporation. Using a customized ultrasound-exposure and fluorescence-imaging platform, we observed sonoporation dynamics at the single-cell level and quantified exogenous molecular uptake levels to characterize the degree of sonoporation. Sonovue microbubbles were introduced to passively regulate microbubble-to-cell distance and number, and bubble size. 1 MHz ultrasound with 10-cycle pulse duration and 0.6 MPa peak negative pressure were applied to trigger the inertial collapse of microbubbles. Our data revealed the impact of non-acoustic parameters on the heterogeneity of sonoporation. (i) The localized collapse of relatively small bubbles (diameter, D < 5.5 μm) led to predictable sonoporation, the degree of which depended on the bubble-to-cell distance (d). No sonoporation was observed when d/D > 1, whereas reversible sonoporation occurred when d/D < 1. (ii) Large bubbles (D > 5.5 μm) exhibited translational movement over large distances, resulting in unpredictable sonoporation. Translation towards the cell surface led to variable reversible sonoporation or irreversible sonoporation, and translation away from the cell caused either no or reversible sonoporation. (iii) The number of bubbles correlated positively with the degree of sonoporation when D < 5.5 μm and d/D < 1. Localized collapse of two to three bubbles mainly resulted in reversible sonoporation, whereas irreversible sonoporation was more likely following the collapse of four or more bubbles. These findings offer useful insight into the relationship between non-acoustic parameters and the degree of sonoporation.  相似文献   

3.
To understand the underlying concepts required for the determination of thresholds for free radical generation, effects of gas dissolution in and microbubble addition to sonicated solutions were investigated. Four solutions with different gaseous conditions, air-saturated and degassed solutions with and without microbubbles of 20 μm in diameter with shells, were studied in the presence of an air–liquid interface. These test solutions were exposed to 1 MHz ultrasound of 0.06 MPap-p at various pulse durations (PDs) from 0.1 to 5 ms and pulse repetition frequencies from 0.1 to 2 kHz. Generation of free radicals was evaluated using the electron spin resonance (ESR) spin trapping method and starch–iodine method. Thresholds of duty ratio (DR) corresponding to temporal average intensity of ultrasound for free radical generation were significantly greater in degassed solutions than in air-saturated solutions. Microbubbles had no significant effects in air-saturated solutions but caused a slight decrease in the threshold in degassed solutions. In all of these results, the DR of a threshold curve against pulse repetition period (PRP) was not constant but linearly decreased with it, suggesting that a balance between bubble growth and shrinkage during the ON and OFF times of burst ultrasound is the primary parameter for the interpretation of thresholds. The effect of an air–liquid interface of the solution was also examined, and it was revealed that gas transport from the air is a predominant factor determining the amount of free radicals.  相似文献   

4.
Encapsulated microbubbles coupled with magnetic nanoparticles, one kind of hybrid agents that can integrate both ultrasound and magnetic resonance imaging/therapy functions, have attracted increasing interests in both research and clinic communities. However, there is a lack of comprehensive understanding of their dynamic behaviors generated in diagnostic and therapeutic applications. In the present work, a hybrid agent was synthesized by integrating superparamagnetic iron oxide nanoparticles (SPIOs) into albumin-shelled microbubbles (named as SPIO-albumin microbubbles). Then, both the stable and inertial cavitation thresholds of this hybrid agent were measured at varied SPIO concentrations and ultrasound parameters (e.g., frequency, pressure amplitude, and pulse length). The results show that, at a fixed acoustic driving frequency, both the stable and inertial cavitation thresholds of SPIO-albumin microbubble should decrease with the increasing SPIO concentration and acoustic driving pulse length. The inertial cavitation threshold of SPIO-albumin microbubbles also decreases with the raised driving frequency, while the minimum sub- and ultra-harmonic thresholds appear at twice and two thirds resonance frequency, respectively. It is also noticed that both the stable and inertial cavitation thresholds of SonoVue microbubbles are similar to those measured for hybrid microbubbles with a SPIO concentration of 114.7 μg/ml. The current work could provide better understanding on the impact of the integrated SPIOs on the dynamic responses (especially the cavitation activities) of hybrid microbubbles, and suggest the shell composition of hybrid agents should be appropriately designed to improve their clinical diagnostic and therapeutic performances of hybrid microbubble agents.  相似文献   

5.
The cavitation microbubbles in dilute gold colloids of different concentrations (2–10 ppm) induced by a focused nanosecond-pulsed laser beam were measured and characterized at different wavelengths by using the passive and active ultrasound measurements. Three colloids with gold nanoparticles (GNPs) of different sizes (10, 45, and 75 nm) were used for experiment. The results show that the lifespan of the microbubble is reduced as the concentration of GNP increases, particularly at the wavelength of 532 nm, the surface plasmon resonance (SPR) of GNP. In contrast, at the off-resonant wavelength (e.g. 700 nm), the lifespan reduction is relatively small. This wavelength-dependent cavitation is attributed to the Faraday–Tyndall effect, a strong light scattering by GNPs. A slight defocusing of the Gaussian beam in gold colloid was proposed. Hence, the waist of the focused beam increases to reduce the optical breakdown in gold colloid. For simplicity, a linear relation between the incremental waist radius of Gaussian beam and the concentration of GNP was assumed. According to this formulation, the theoretical results are consistent with the experimental ones. In addition, the dynamics of the microbubble in gold colloid measured by the active ultrasound method agree with the Rayleigh–Plesset model.  相似文献   

6.
Ultrasound-mediated drug delivery was established using liposomes that were modified with the thermosensitive polymer (TSP) poly(NIPMAM-co-NIPAM), which sensitized the liposomes to high temperatures. TSP-modified liposomes (TSP liposomes) released encapsulated calcein under 1 MHz ultrasound irradiation at 0.5 W/cm2 for 120 s as well as the case under incubation at 42 °C for 15 min. In addition, uptake of the drug released from TSP liposomes by cancer cells was enhanced by ultrasound irradiation. In a cell injury assay using doxorubicin (DOX)-loaded TSP liposomes and ultrasound irradiation, cell viability of HepG2 cells at 6 h after ultrasound irradiation (1 MHz, 0.5 W/cm2 for 30 s) with DOX-loaded TSP liposomes (TSP/lipid ratio = 1) was 60%, which was significantly lower than that of the control conditions such as DOX-loaded TSP liposomes alone and DOX-loaded intact liposomes under ultrasound irradiation.  相似文献   

7.
We synthesized oxygen and paclitaxel (PTX) loaded lipid microbubbles (OPLMBs) for ultrasound mediated combination therapy in hypoxic ovarian cancer cells. Our experiments successfully demonstrated that ultrasound induced OPLMBs destruction significantly enhanced the local oxygen release. We also demonstrated that OPLMBs in combination with ultrasound (300 kHz, 0.5 W/cm2, 15 s) yielded anti-proliferative activities of 52.8 ± 2.75% and cell apoptosis ratio of 35.25 ± 0.17% in hypoxic cells at 24 h after the treatment, superior to other treatment groups such as PTX only and PTX-loaded MBs (PLMBs) with or without ultrasound mediation. RT-PCR and Western blot tests further confirmed the reduced expression of HIF-1α and MDR-1/P-gp after ultrasound mediation of OPLMBs. Our experiment suggests that ultrasound mediation of oxygen and drug-loaded MBs may be a useful method to overcome chemoresistance in the hypoxic ovarian cancer cells.  相似文献   

8.
The effects of hydrostatic pressure on the fluorescence of tyrosine (Tyr) solution with different concentrations of copper ion (Cu2+) were investigated. The fluorescent intensity of pure Tyr aqueous solution enhanced with the increase of hydrostatic pressure, the fluorescent intensity increased by 8.8% when the pressure was up to 60 MPa. The fluorescence of Tyr aqueous solution was quenched obviously due to complex formation with Cu2+ and the quenching became stronger when the concentration of Cu2+ was higher. When the concentration ratio of Cu2+ and Tyr ([Cu2+]/[Tyr]) increased from 0 to 40, the fluorescent intensity decreased to 19.0% at 0.1 MPa and 24.2% at 60 MPa. It was also found that the effects of pressure on the fluorescent intensity of Tyr aqueous solution were different at various [Cu2+]/[Tyr]. The fluorescent intensity increased by 14.4% and 38.4% for 1 and 40 ratio respectively when the pressure was changed from 0.1 MPa to 60 MPa.  相似文献   

9.
In this study, the effects of ultrasound with different ultrasonic frequencies on the properties of sodium alginate (ALG) were investigated, which were characterized by the means of the multi-angle laser light scattering photometer analysis (GPC-MALLS), rheological analysis, circular dichroism (CD) spectrometer and scanning electron microscope (SEM). It showed that the molecular weight (Mw) and molecular number (Mn) of the untreated ALG was 1.927 × 105 g/mol and 4.852 × 104 g/mol, respectively. The Mw of the ultrasound treated ALG was gradually increased from 3.50 × 104 g/mol to 7.34 × 104 g/mol while the Mn of ALG was increased and then decreased with the increase of the ultrasonic frequency. The maximum value of Mn was 9.988 × 104 g/mol when the ALG was treated by ultrasound at 40 kHz. It indicated that ultrasound could induce ALG degradation and rearrangement. The number of the large molecules and small molecules of ALG was changed by ultrasound. The value of dn/dc suggested that the ultrasound could enhance the stability of ALG. Furthermore, it was found that ALG treated by ultrasound at 50 kHz tended to be closer to a Newtonian behavior, while the untreated and treated ALG solutions exhibited pseudoplastic behaviours. Moreover, CD spectra demonstrated that ultrasound could be used to improve the strength of the gel by changing the ratio of M/G, which showed that the minimum ratio of M/G of ALG treated at 135 kHz was 1.34. The gel-forming capacity of ALG was correlated with the content of G-blocks. It suggested that ALG treated by ultrasound at 135 kHz was stiffer in the process of forming gels. The morphology results indicated that ultrasound treatment of ALG at 135 kHz increased its hydrophobic interaction and interfacial activity. This study is important to explore the effect of ultrasound on ALG in improving the physical properties of ALG as food additives, enzyme and drug carriers.  相似文献   

10.
《Ultrasonics》2013,53(1):225-231
The design of high voltage pulser for air coupled ultrasound imaging is presented. It is dedicated for air-coupled ultrasound applications when piezoelectric transducer design is used. Two identical N-channel MOSFETs are used together with 1200 V high and low side driver IC. Simple driving pulses’ delay and skew circuit is used to reduce the cross-conduction. Analysis of switch peak current and channel resistance relation to maximum operation frequency and load capacitance is given. PSPICE simulation was used to analyze the gate driver resistance, gate pulse skew, pulse amplitude influence on energy consumption when loaded by capacitive load. Experimental investigation was verified against simulation and theoretical predictions. For 500 pF capacitance, which is most common for piezoelectric air coupled transducers, pulser consumes 650 μJ at 1 kV pulse and 4 μJ at 50 V. Pulser is capable to produce up to 1 MHz pulse trains with positive 50 V–1 kV pulses with up to 10 A peak output current. When loaded by 200 kHz transducer at 1 kV pulse amplitude rise time is 40 ns and fall time is 32 ns which fully satisfies desired 1 MHz bandwidth.  相似文献   

11.
Microbubbles have been widely studied as ultrasound contrast agents for diagnosis and as drug/gene carriers for therapy. However, their size and stability (lifetime of 5–12 min) limited their applications. The development of stable nanoscale ultrasound contrast agents would therefore benefit both. Generating bubbles persistently in situ would be one of the promising solutions to the problem of short lifetime. We hypothesized that bubbles could be generated in situ by providing stable air nuclei since it has been found that the interfacial nanobubbles on a hydrophobic surface have a much longer lifetime (orders of days). Mesoporous silica nanoparticles (MSNs) with large surface areas and different levels of hydrophobicity were prepared to test our hypothesis. It is clear that the superhydrophobic and porous nanoparticles exhibited a significant and strong contrast intensity compared with other nanoparticles. The bubbles generated from superhydrophobic nanoparticles sustained for at least 30 min at a MI of 1.0, while lipid microbubble lasted for about 5 min at the same settings. In summary MSNs have been transformed into reliable bubble precursors by making simple superhydrophobic modification, and made into a promising contrast agent with the potentials to serve as theranostic agents that are sensitive to ultrasound stimulation.  相似文献   

12.
In the attempt to improve urban environmental conditions, city or national incentives encourage the use of cleaner vehicles, including hybrid electric vehicles. This paper explores the actual noise impact of this alternative drivetrain technology on the noise emission of a mid-size delivery truck powered by a parallel hybrid powertrain, compared with an equivalent internal combustion engine truck on the basis of pass-by noise measurements. It investigates jointly the overall emission, the main noise sources and the vertical directivity of the vehicle. The essential benefit results from the existence of a full-electric mode below 50 km/h, with a significant noise reduction which may exceed 8 dB(A) at low constant speed. Even if smaller, this noise advantage is still valuable when the vehicle is accelerating or braking. Due to weaker noise emitted upwards, the benefit should be even greater for residents living on upper building floors. The rolling noise associated with the drive wheel/road contact is the main noise source in all driving situations in electric mode, and beyond 50 km/h in the configurations with engine.  相似文献   

13.
《Ultrasonics sonochemistry》2014,21(6):2138-2143
The delivery of a consistent quality product to the consumer is vitally important for the food industry. The aim of this study was to investigate the potential for using high frequency ultrasound applied to pre- and post-rigor beef muscle on the metabolism and subsequent quality. High frequency ultrasound (600 kHz at 48 kPa and 65 kPa acoustic pressure) applied to post-rigor beef striploin steaks resulted in no significant effect on the texture (peak force value) of cooked steaks as measured by a Tenderometer. There was no added benefit of ultrasound treatment above that of the normal ageing process after ageing of the steaks for 7 days at 4 °C. Ultrasound treatment of post-rigor beef steaks resulted in a darkening of fresh steaks but after ageing for 7 days at 4 °C, the ultrasound-treated steaks were similar in colour to that of the aged, untreated steaks. High frequency ultrasound (2 MHz at 48 kPa acoustic pressure) applied to pre-rigor beef neck muscle had no effect on the pH, but the calculated exhaustion factor suggested that there was some effect on metabolism and actin-myosin interaction. However, the resultant texture of cooked, ultrasound-treated muscle was lower in tenderness compared to the control sample. After ageing for 3 weeks at 0 °C, the ultrasound-treated samples had the same peak force value as the control. High frequency ultrasound had no significant effect on the colour parameters of pre-rigor beef neck muscle. This proof-of-concept study showed no effect of ultrasound on quality but did indicate that the application of high frequency ultrasound to pre-rigor beef muscle shows potential for modifying ATP turnover and further investigation is warranted.  相似文献   

14.
《Ultrasonics sonochemistry》2014,21(3):1258-1264
Efficient lysis of microalgae for lipid extraction is an important concern when processing biofuels. Historically, ultrasound frequencies in the range of 10–40 kHz have been utilized for this task. However, greater efficiencies might be achievable if higher frequencies could be used. In our study, we evaluated the potential of using 1.1 MHz ultrasound to lyse microalgae for biofuel production while using Chlamydomonas reinhardtii as a model organism. The ultrasound was generated using a spherically focused transducer with a focal length of 6.34 cm and an active diameter of 6.36 cm driven by 20 cycle sine-wave tone bursts at a pulse repetition frequency of 2 kHz (3.6% duty cycle). The time-average acoustic power output was 26.2 W while the spatial-peak-pulse-average intensity (ISPPA) for each tone burst was 41 kW/cm2. The peak compressional and rarefactional pressures at the focus were 102 and 17 MPa, respectively. The exposure time was varied for the different cases in the experiments from 5 s to 9 min and cell lysis was assessed by quantifying the percentage of protein and chlorophyll release into the supernate as well as the lipid extractability. Free radical generation and lipid oxidation for the different ultrasound exposures were also determined. We found that there was a statistically significant increase in lipid extractability for all of the exposures compared to the control. The longer exposures also completely fragmented the cells releasing almost all of the protein and chlorophyll into the supernate. The cavitation activity did not significantly increase lipid oxidation while there was a minor trend of increased free radical production with increased ultrasound exposure.  相似文献   

15.
In atherosclerotic inducement in animal models, the conventionally used balloon injury is invasive, produces excessive vessel injuries at unpredictable locations and is inconvenient in arterioles. Fortunately, cavitation erosion, which plays an important role in therapeutic ultrasound in blood vessels, has the potential to induce atherosclerosis noninvasively at predictable sites. In this study, precise spatial control of cavitation erosion for superficial lesions in a vessel phantom was realised by using an ultrasonic standing wave (USW) with the participation of cavitation nuclei and medium-intensity ultrasound pulses. The superficial vessel erosions were restricted between adjacent pressure nodes, which were 0.87 mm apart in the USW field of 1 MHz. The erosion positions could be shifted along the vessel by nodal modulation under a submillimetre-scale accuracy without moving the ultrasound transducers. Moreover, the cavitation erosion of the proximal or distal wall could be determined by the types of cavitation nuclei and their corresponding cavitation pulses, i.e., phase-change microbubbles with cavitation pulses of 5 MHz and SonoVue microbubbles with cavitation pulses of 1 MHz. Effects of acoustic parameters of the cavitation pulses on the cavitation erosions were investigated. The flow conditions in the experiments were considered and discussed. Compared to only using travelling waves, the proposed method in this paper improves the controllability of the cavitation erosion and reduces the erosion depth, providing a more suitable approach for vessel endothelial injury while avoiding haemorrhage.  相似文献   

16.
《Ultrasonics sonochemistry》2014,21(5):1866-1874
This study investigated the mechanical bioeffects exerted by acoustic droplet vaporization (ADV) under different experimental conditions using vessel phantoms with a 200-μm inner diameter but different stiffness for imitating the microvasculature in various tumors. High-speed microscopy, passive cavitation detection, and ultrasound attenuation measurement were conducted to determine the morphological characteristics of vascular damage and clarify the mechanisms by which the damage was initiated and developed. The results show that phantom erosion was initiated under successive ultrasound exposure (2 MHz, 3 cycles) at above 8-MPa peak negative pressures (PNPs) when ADV occurred with inertial cavitation (IC), producing lesions whose morphological characteristics were dependent on the amount of vaporized droplets. Slight injury occurred at droplet concentrations below (2.6 ± 0.2) × 106 droplets/mL, forming shallow and rugged surfaces on both sides of the vessel walls. Increasing the droplet concentration to up to (2.6 ± 0.2) × 107 droplets/mL gradually suppressed the damage on the distal wall, and turned the rugged surface on the proximal wall into tunnels rapidly elongating in the direction opposite to ultrasound propagation. Increasing the PNP did not increase the maximum tunnel depth after the ADV efficiency reached a plateau (about 71.6 ± 2.7% at 10 MPa). Increasing the pulse duration effectively increased the maximum tunnel depth to more than 10 times the diameter of the vessel even though there was no marked enhancement in IC dose. It can be inferred that substantial bubble generation in single ADV events may simultaneously distort the acoustic pressure distribution. The backward ultrasound reinforcement and forward ultrasound shielding relative to the direction of wave propagation augment the propensity of backward erosion. The results of the present work provide information that is valuable for the prevention or utilization of ADV-mediated mechanical bioeffects in clinical applications.  相似文献   

17.
A novel alternated ultrasonic and electric pulse enhanced electrochemical process was developed and used for investigating its effectiveness on the degradation of p-nitrophenol (PNP) in an aqueous solution. The impacts of pulse mode, pH, cell voltage, supporting electrolyte concentration, ultrasonic power and the initial concentration of PNP on the performance of PNP degradation were evaluated. Possible pathway of PNP degradation in this system was proposed based on the intermediates identified by GC–MS. Experimental results showed that 94.1% of PNP could be removed at 2 h in the dual-pulse ultrasound enhanced electrochemical (dual-pulse US-EC) process at mild operating conditions (i.e., pulse mode of electrochemical pulse time (TEC) = 50 ms and ultrasonic pulse time (TUS) = 100 ms, initial pH of 3.0, cell voltage of 10 V, Na2SO4 concentration of 0.05 M, ultrasonic powder of 48.8 W and initial concentration of PNP of 100 mg/L), compared with 89.0%, 58.9%, 2.4% in simultaneous ultrasound enhanced electrochemical (US-EC) process, pulsed electrochemical (EC) process and pulsed ultrasound (US), respectively. Moreover, energy used in the dual-pulse US-EC process was reduced by 50.4% as compared to the US-EC process. The degradation of PNP in the pulsed EC process, US-EC process and dual-pulse process followed pseudo-first-order kinetics. Therefore, the dual-pulse US-EC process was found to be a more effective technique for the degradation of PNP and would have a promising application in wastewater treatment.  相似文献   

18.
《Ultrasonics》2013,53(1):196-202
In this study, we found that microbubbles with diameters of less than 100 μm can be easily generated by using a hollow cylindrical ultrasonic horn. Consecutive images of bubbles obtained by using high-speed and high-resolution cameras reveal that a capillary wave is formed on the gas–liquid interface under weak ultrasonic irradiation and that the wave head is detached in the form of bubbles by the fragmentation of the interface as the power of ultrasonic irradiation increases. Moreover, consecutive images of the bubble interface obtained by an ultra-high-speed camera indicate that the breakup of bubbles oscillating harmonically with the ultrasonic irradiation generates many microbubbles that are less than 100 μm in diameter. With regard to the orifice diameter of the horn end, we found that its optimum value varies with the ultrasonic power input. When the orifice diameter is small, the capillary wave generated from the horn end easily propagates all over the gas–liquid interface, thereby starting the generation of microbubbles at a lower ultrasonic power input. When the orifice diameter is large, the capillary wave is attenuated because of viscosity and surface tension. Hence, in this case, microbubble generation from the horn requires a higher ultrasonic power input. Furthermore, the maximum yield of microbubbles via primary and secondary bubble generation can be increased by increasing the gas flow rate.  相似文献   

19.
Ultrasound coupled with supercritical CO2 has become an important method for exfoliation of graphene, but behind which a peeling mechanism is unclear. In this work, CFD simulation and experiment were both investigated to elucidate the mechanism and the effects of the process parameters on the exfoliation yield. The experiments and the CFD simulation were conducted under pressure ranging from 8 MPa to 16 MPa, the ultrasonic power ranging from 12 W to 240 W and the frequency of 20 kHz. The numerical analysis of fluid flow patterns and pressure distributions revealed that the fluid shear stress and the periodical pressure fluctuation generated by ultrasound were primary factors in exfoliating graphene. The distribution of the fluid shear stress decided the effective exfoliation area, which, in turn, affected the yield. The effective area increased from 5.339 cm3 to 8.074 cm3 with increasing ultrasonic power from 12 W to 240 W, corresponding to the yield increasing from 5.2% to 21.5%. The pressure fluctuation would cause the expansion of the interlayers of graphite. The degree of the expansion increased with the increase of the operating pressure but decreased beyond 12 MPa. Thus, the maximum yield was obtained at 12 MPa. The cavitation might be generated by ultrasound in supercritical CO2. But it is too weak to exfoliate graphite into graphene. These results provide a strategy in optimizing and scaling up the ultrasound-assisted supercritical CO2 technique for producing graphene.  相似文献   

20.
The present work reports a novel dual-pulse ultrasound enhanced electrochemical degradation (US-ECD) process that synchronizes alternatively ultrasound pulses and potential pulses to degrade nitrobenzene in aqueous solution with a high percentage degradation and low energy consumption. In comparison to the test results generated from the conventional US-ECD and original electrochemical degradation (ECD) process, the dual-pulse US-ECD process increased degradation percentages to nitrobenzene by 2% and 17%, respectively, while energy used in the pulse process was only about 46.5% of that was used in the conventional US-ECD process. Test results demonstrated a superior performance of the dual-pulse US-ECD process over those of other conventional ones. Impacts of pulse mode, initial pH value, cell voltage, supporting electrolyte concentration and ultrasonic power on the process performances were investigated. With operation conditions optimized in the study at pH = 3.0, cell voltage = 10 V, ultrasonic power = 48.84 W, electrolyte concentration = 0.1 M and an experiment running time of 30 min, the percentage degradation of nitrobenzene could reach 80% (US pulse time = 50 ms and ECD pulse time = 50 ms). This process provided a reliable and effective technical approach to degrade nitrobenzene in aqueous solution and significantly reduced energy consumption in comparison to the conventional US-ECD or original ECD treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号