首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a uniplanar coplanar-waveguide 3-dB tandem coupler operating at V-band frequencies. The uniplanar structure is monolithically fabricated by using two-section parallel-coupled lines and air-bridge crossovers replacing the conventional multilayer or bonded structures. Due to an optimized tandem structure and non-bonded crossovers minimizing the parasitic components, a maximum coupling of 2.5 dB is measured at 62 GHz with a 2 dB bandwidth of 83%, while a high directivity factor of 33 dB is simultaneously obtained at 58–62 GHz. Over the entire design frequency range of 30–90 GHz, we achieve good phase unbalance of 90 ± 6.0°, as well as return loss and isolation lower than −23 and −16 dB, respectively.  相似文献   

2.
Resolution reduction by a diffraction limit becomes severe with an increase in the wavelength of an electron at a relatively low accelerating voltage. For maintaining atomic resolution at a low accelerating voltage, a larger convergence angle with aberration correction is required. The developed aberration corrector, which compensates for higher-order aberration, can expand the uniform phase angle. Sub-angstrom imaging of a Ge [1 1 2] specimen with a narrow energy spread obtained by a cold field emission gun at 60 kV was performed using the aberration corrector. We achieved a resolution of 82 pm for a Ge–Ge dumbbell structure image by high angle annular dark-field imaging.  相似文献   

3.
《Ultrasonics》2013,53(1):1-16
Synthetic aperture sequential beamforming (SASB) is a novel technique which allows to implement synthetic aperture beamforming on a system with a restricted complexity, and without storing RF-data. The objective is to improve lateral resolution and obtain a more depth independent resolution compared to conventional ultrasound imaging. SASB is a two-stage procedure using two separate beamformers. The initial step is to construct and store a set of B-mode image lines using a single focal point in both transmit and receive. The focal points are considered virtual sources and virtual receivers making up a virtual array. The second stage applies the focused image lines from the first stage as input data, and take advantage of the virtual array in the delay and sum beamforming. The size of the virtual array is dynamically expanded and the image is dynamically focused in both transmit and receive and a range independent lateral resolution is obtained. The SASB method has been investigated using simulations in Field II and by off-line processing of data acquired with a commercial scanner. The lateral resolution increases with a decreasing F#. Grating lobes appear if F#  2 for a linear array with λ-pitch. The performance of SASB with the virtual source at 20 mm and F# = 1.5 is compared with conventional dynamic receive focusing (DRF). The axial resolution is the same for the two methods. For the lateral resolution there is improvement in FWHM of at least a factor of 2 and the improvement at −40 dB is at least a factor of 3. With SASB the resolution is almost constant throughout the range. For DRF the FWHM increases almost linearly with range and the resolution at −40 dB is fluctuating with range. The theoretical potential improvement in SNR of SASB over DRF has been estimated. An improvement is attained at the entire range, and at a depth of 80 mm the improvement is 8 dB.  相似文献   

4.
High resistivity sputtered a-GexSi1−xOy compound was investigated for application to microbolometer fabrication for thermal imaging. Noise behavior of the fabricated bolometers was measured, showing no evidence of random telegraph switching (RTS) noise. 1/f noise was measured at several measuring currents, resulting in a 1/f noise factor of 2.9 × 10−11 that can be used for further design and modeling.  相似文献   

5.
《Solid State Ionics》2006,177(19-25):1733-1736
Thin films of La1.61GeO5−δ, a new oxide ionic conductor, were fabricated on dense polycrystalline Al2O3 substrates by a pulsed laser deposition (PLD) method and the effect of the film thickness on the oxide ionic conductivity was investigated on the nanoscale. The deposition parameters were optimized to obtain La1.61GeO5−δ thin films with stoichiometric composition. Annealing was found necessary to get crystalline La1.61GeO5−δ thin films. It was also found that the annealed La1.61GeO5−δ film exhibited extraordinarily high oxide ionic conductivity. Due to the nano-size effects, the oxide ion conductivity of La1.61GeO5−δ thin films increased with the decreasing thickness as compared to that in bulk La1.61GeO5−δ. In particular, the improvement in conductivity of the film at low temperature was significant .The electrical conductivity of the La1.61GeO5−δ film with a thickness of 373 nm is as high as 0.05 S cm 1 (log(σ/S cm 1) =  1.3) at 573 K.  相似文献   

6.
PurposeMulti-spin echo acquisition cine imaging (MUSACI) is a method used for cerebrospinal fluid (CSF) dynamics imaging based on the proton phase dispersion and flow void using 3D multi-spin echo imaging. In a previous study, the refocusing flip angle of MUSACI was set at a constant 80°. We conducted the present study to investigate the preservation the CSF signal intensity even in a long echo train and improve the ability to visualize CSF movement by modifying the refocusing flip angle in MUSACI.MethodsThe MUSACI images were acquired in 10 healthy volunteers (7 men and 3 women; age range 24–44 years; mean age 29.4 ± 6.2 years) with a 3.0 Tesla MR scanner. Five refocusing flip angle sets were applied: constant 30°, constant 50°, constant 80°, pseudo-steady state (PSS) 50°–70°–100° (PSS 50°), and PSS 80°–100°–130° (PSS 80°). In all sequences, the in-plane spatial resolution was 0.58 × 0.58 mm2, and the CSF movement for one heartbeat was drawn at 80-msec intervals. The signal intensity (SI) of CSF in the lateral ventricle, the foramen of Monro, the third ventricle, the fourth ventricle, and the pons was measured on MUSACI. Pearson's correlation coefficient was calculated between the CSF SI and effective echo time (TE; TEeff) in the lateral ventricle.ResultsBoth antegrade and retrograde CSF movements on the midsagittal MUSACI images and the retrograde CSF movement in the foramen of Monro was observed in all sequences with the constant flip angles. A strong reverse correlation between the CSF SI in the lateral ventricle and TEeff values was observed with constant 30° (r = −0.96, p < 0.01), constant 50° (r = −0.97, p < 0.01) and constant 80° (r = −0.88, p < 0.01). A weak positive correlation was observed with PSS 50° (r = 0.28, p = 0.43), and a moderate reverse correlation was observed at PSS 80° (r = −0.60, p = 0.07). The SI values of the foramen of Monro, the third ventricle, and the fourth ventricle were significantly lower than that of the lateral ventricle, and those values were higher than that of the pons in both the constant 80° sequence and the PSS 50° sequence.ConclusionPSS 50° could be the optimal flip angle scheme for MUSACI, because the SI changes due to CSF movement and the SI preservation due to a long echo train were large due to the use of the refocusing flip angle method.  相似文献   

7.
An organic/inorganic hybrid 2 × 2 directional coupler (DC) Mach–Zehnder interferometer (MZI) thermo-optic (TO) switch was successfully designed and fabricated using simple direct ultraviolet photolithography process. The hybrid organic/inorganic waveguide structure includes poly-methyl-methacrylate-glycidyl-methacrylate (P(MMA-GMA)), SU-8 2005 and silica as core, upper cladding and under cladding, respectively. Device optimization and simulation were performed to decrease radiation loss and leakage loss, quicken response time and cut down power consumption. Measurements of the fabricated devices at 1550 nm wavelength result in a switching power of 7.2 mW, a response time of ∼100 μs, and crosstalk of −22.8 and −26.5 dB under cross state and bar state, respectively. Besides, the driving-noise-tolerance characteristics of this device were experimentally investigated by directly imposing a generated tunable noise on the pure driving signal (4 Vpp) and the minimum extinction ratio is larger than 18 dB under a noise level of 2.5 Vpp. The effect of noise on extinction ratio was found decreased with the increase of noise frequency.  相似文献   

8.
《Current Applied Physics》2010,10(4):1221-1226
Good quality ammonium dihydrogen phosphate single crystals have been grown by: (i) Sankaranarayanan–Ramasamy (SR) method and (ii) SR method with slotted ampoule. The grown crystals were subjected to UV–Vis spectroscopy, high-resolution X-ray diffractometer, dielectric, piezoelectric and laser damage threshold studies. Compared to the (1 0 0) plane of the conventional method grown ADP crystal and 〈1 0 0〉 directed SR method grown ADP crystal, the crystal grown by SR method with slotted ampoule has higher growth rate, higher optical transparency, high crystalline perfection, low dielectric loss, high piezoelectric charge coefficient and high laser damage threshold due to diffusion of segregated impurities away from the growing crystal in the slotted ampoule growth.  相似文献   

9.
To quantify intragastric fat volume and distribution with accelerated magnetic resonance (MR) imaging using signal model-based dictionaries (DICT) in comparison to conventional parallel imaging (CG-SENSE). This study was approved by the local ethics committee and written informed consent was obtained. Seven healthy subjects were imaged after intake of a lipid emulsion and data at three different time points during the gastric emptying process was acquired in order to cover a range of fat fractions. Fully sampled and prospectively undersampled image data at a reduction factor of 4 were acquired using a multi gradient echo sequence at 1.5T. Retrospectively and prospectively undersampled data were reconstructed with DICT and CG-SENSE. Image quality of the retrospectively undersampled data was assessed relative to the fully sampled reference using the root mean square error (RMSE). In order to assess the agreement of fat volumes and intragastric fat distribution, Bland-Altman analysis and linear regression were performed on the data. The RMSE in intragastric content (ΔRMSE = 0.10 ± 0.01, P < 0.001) decreased significantly with DICT relative to CG-SENSE. CG-SENSE overestimated fat volumes (bias 2.1 ± 1.3 mL; confidence limits 5.4 and − 1.1 mL) in comparison to the prospective DICT reconstruction (bias − 0.1 ± 0.7 mL; confidence limits 1.8 and − 2.0 mL). There was a good agreement in fat distribution between the images reconstructed by retrospective DICT and the reference images (regression slope: 1.01, R2 = 0.961). Accelerating gastric MRI by integrating a dictionary-based signal model allows for improved image quality and increases accuracy of fat quantification during breathholds.  相似文献   

10.
We have experimentally identified the noise-generation mechanisms of large modern upwind wind turbines (WTs). First, the sound measurement procedures of IEC 61400-11 were used in the field test, and noise emissions from two WTs were evaluated: a stall-controlled WT with powers of 1.5 MW and a pitch-regulated WT with powers of 660 kW. One-third octave band levels were normalized using the scale law for the velocity dependence of the inflow broadband noise and airfoil self-noise. The results showed that for the 1.5 MW WT, inflow turbulence noise was dominant over the whole frequency range. For the 660 kW WT, the inflow broadband noise did not contribute across the whole audible frequency range. The distribution of noise sources in the rotor plane was visualized using a beam-forming measurement system (B&K 7768, 7752, and WA0890) consisting of 48 microphones. The array results for the 660 kW WT indicated that all noise was produced during the downward movement of the blades. This finding was in good agreement with theoretical results obtained using an empirical formula that includes the effects of the convective amplification, directivity, and flow-speed dependence of the turbulence boundary-layer trailing edge noise. This agreement implies that this trailing edge noise is dominant over the whole frequency range in the case of the 660 kW WT.  相似文献   

11.
A high-resolution, flood-illumination retinal camera using liquid crystal (LC) adaptive optics (AO) is presented. The retinal camera uses light at 780 nm for ocular aberration measurement while light at 655 nm and 593 nm for retinal imaging. In order to avoid chromatic aberrations due to wavelength dependence of LC, we adopt an open-loop technique, in which dynamic correction of aberrations is applied only to the imaging light. A compensation pattern projected on the LC wavefront corrector is adjusted to provide phase wrapping of 2 π for illumination light. We confirmed feasibility of this technique by performing in vivo retinal imaging experiments. Photoreceptors were clearly revealed at both imaging light at 655 nm and 593 nm. Feasibility of the technique was also supported by comparison of the retinal images taken by the present open-loop technique with those taken by the conventional closed-loop one and by analysis of the spatial distribution of the photoreceptors.  相似文献   

12.
The geometries, electronic structures, spin magnetic moments (SMMs), orbital magnetic moments (OMMs) and spin anisotropy energies (SAEs) of light rare earth atoms (La, Ce, Pr, Nd, Pm, Sm, Eu, and Gd) embedded in graphene were studied by using first-principles calculations based on Density Functional Theory (DFT). The spin-orbital coupling effect was taken into account and GGA+U method was adopted to describe the strongly localized and correlated 4f electrons. There is a significant deformation of the graphene plane after doping and optimization. The deformation of Gd doped graphene is the largest, while Eu the smallest. The results show that the valence is +3 for La, Ce, Pr, Nd, Pm, Sm and Gd, and +2 for Eu. Except Eu and Gd, there are obvious OMMs. When the spin is in the Z direction, the OMMs are −0.941 μB, −1.663 μB, −3.239 μB, −3.276 μB and −3.337 μB for Ce, Pr, Nd, Pm and Sm, respectively, and point the opposite direction of SMMs. All the doped systems except Gd show considerable SAEs. For Ce, Pr, Nd, Pm, Sm, and Eu, the SAEs are −0.928 meV, 20.941 meV, −8.848 meV, 7.855 meV, 75.070 meV and 0.810 meV, respectively. When the spin orientation is different, different orbital angular moments lead to apparent charge density difference of the 4f atoms, which can also explain the origin of SAEs.  相似文献   

13.
Nb-doped TiO2−x thin films were deposited using a 1 at% niobium doped titanium target by RF reactive magnetron sputtering at various oxygen partial pressures (pO2). The films appeared amorphous in the pO2 range of 4.4–4.7% with resistivity ranging from 0.39 Ω cm to 2.48 Ω cm. Compared to pure TiO2−x films, the resistivity of the Nb-doped TiO2−x films did not change sensitively with the oxygen partial pressure, indicating that the resistivity of the films can be accurately controlled. 1/f noise parameter of Nb-doped TiO2−x films were found to decrease largely while the measured temperature coefficient of resistance (TCR) of the films was still high. The obtained results indicate that Nb-doped TiO2−x films have great potential as an alternative bolometric material.  相似文献   

14.
《Solid State Ionics》2006,177(5-6):569-572
Silicate sol–gel precursors of poly[bis(methoxyethoxyethoxy)phosphazene] and their corresponding hybrid networks were synthesized by hydrolysis and condensation reactions. Conversion of the precursor polymers to covalently interconnected hybrid networks with controlled morphologies and physical properties was achieved. Thermal analyses showed no melting transitions for the networks and low glass transition temperatures that ranged from approximately − 38 to − 67 °C. Solid solutions with lithium bis(trifluoromethanesulfonyl)amide in the network showed a maximum ionic conductivity value of 7.69 × 10 5 S/cm, making these materials interesting candidates for dimensionally stable solid polymer electrolytes.  相似文献   

15.
《Solid State Ionics》2006,177(13-14):1149-1155
The Lu2+xTi2−xO7−x/2 (x = 0; 0.052; 0.096; 0.286; 0.44; 0.63; 33.3–49 mol% Lu2O3) nanoceramics with partly disordered pyrochlore-type structure are prepared by sintering freeze-dried powders obtained by a co-precipitation technique with 1600 °C annealing. Similar to pyrochlore-like compositions in the zirconate system, some of the new titanates are good oxide-ion conductors in air. The new solid-state electrolytes have oxide-ion conductivity in the interval of 1.0 × 10 3  2.5 × 10 S/cm at 740 °C in air. This value of conductivity is comparable with that of ZrO2/Y2O3 ceramics. The conductivity of Lu2+xTi2−xO7−x/2 depends on the chemical composition. The highest ionic conductivity is exhibited by nearly stoichiometric Lu2+xTi2−xO7−x/2 (x = 0.096; 35.5 mol% Lu2O3) material containing ∼ 4.8 at.% LuTi anti-site defects.  相似文献   

16.
The influence of urban morphology of low-density built-up areas on spatial noise level attenuation of flyover aircrafts is investigated at a mesoscale. Six urban morphological parameters, including Building Plan Area Fraction, Complete Aspect Ratio, Building Surface Area to Plan Area Ratio, Building Frontal Area Index, Height-to-Width Ratio, and Horizontal Distance of First-row Building to Flight Path, have been selected and developed. Effects of flight altitude and horizontal flight path distance to site, on spatial aircraft noise attenuation, are examined, considering open areas and façades. Twenty sampled sites, each of 250 m * 250 m, are considered. The results show that within 1000 m horizontal distance of flight path to a site, urban morphology plays an important role in open areas, especially for the buildings with high sound absorption façades, where the variance of average noise level attenuation among different sites is about 4.6 dB at 3150 Hz. The effect of flight altitude of 200–400 ft on average noise level attenuation is not significant, within about 2 dB at both 630 Hz and1600 Hz in open areas. Urban morphological parameters influence the noise attenuation more in open areas than that on façades. Spatial noise attenuation of flyover aircrafts is mainly correlated to Building Frontal Area Index and Horizontal Distance of First-row Building to Flight Path.  相似文献   

17.
Low temperature drying (LTD) allows high-quality dried products to be obtained, preserving the nutritional properties of fresh foods better than conventional drying, but it is a time-consuming operation. Power ultrasound (US) could be used to intensify LTD, but it should be taken into account that process variables, such as the level of applied power, have an influence on the magnitude and extension of the ultrasonic effects. Therefore, the aim of this work was to assess the influence of the level of applied ultrasonic power on the LTD of apple, analyzing the drying kinetics and the quality of the dried product. For that purpose, apple (Malus domestica cv. Granny Smith) cubes (8.8 mm side) were dried (2 m/s) at two different temperatures (10 and −10 °C), without and with (25, 50 and 75 W) US application. In the dried apple, the rehydration kinetics, hardness, total phenolic content, antioxidant capacity and microstructure were analyzed to evaluate the impact of the level of applied ultrasonic power.At both temperatures, 10 and −10 °C, the higher the ultrasonic power level, the shorter the drying time; the maximum shortening of the drying time achieved was 80.3% (at −10 °C and 75 W). The ultrasonic power level did not significantly (p < 0.05) affect the quality parameters analyzed. Therefore, US could be considered a non-thermal method of intensifying the LTD of fruits, like apple, with only a mild impact on the quality of the dried product.  相似文献   

18.
PurposeTo investigate right ventricular (RV) strain in patients without identified cardiac pathology using cardiac magnetic resonance tissue tracking (CMR TT).MethodsA total of 50 consecutive patients with no identified cardiac pathology were analyzed. RV longitudinal and circumferential strain was assessed by CMR TT. The age range was 4–81 years with a median of 32 years (interquartile range, 15 to 56 years).ResultsAnalysis time per patient was < 5 min. The peak longitudinal strain (Ell) was − 22.11 ± 3.51%. The peak circumferential strains (Ecc) for global, basal, mid-cavity and apical segments were as follows: − 11.69 ± 2.25%, − 11.00 ± 2.45%, − 11.17 ± 3.36%, − 12.90 ± 3.34%. There were significant gender differences in peak Ecc at the base (P = 0.04) and the mid-cavity (P = 0.03) with greater deformation in females than in males. On Bland-Altman analysis, peak Ell (mean bias, 0.22 ± 1.67; 95% CI − 3.05 to 3.49) and mid-cavity Ecc (mean bias, 0.036 ± 1.75; 95% CI, − 3.39 to 3.47) had the best intra-observer agreement and inter-observer agreement, respectively.ConclusionsRV longitudinal and circumferential strains can be quickly assessed with good intra-observer and inter-observer variability using TT.  相似文献   

19.
The surface topography and fractal properties of GexSb(As)40−xS50Te10 (x = 10, 20, 27 at.%) films, evaporated onto glass substrates, have been studied by atomic force microscopic imaging at different scales. The surface of the chalcogenide films is smooth (<5 nm roughness), isotropic and having some particular differences in texture. All films are self-similar with Mean Fractal Dimension in the range of 2.25–2.63. The films with GexSb40−xS50Te10 composition are more uniform in terms of surface morphology (grains structure) than those with GexAs40−xS50Te10 composition for which the film surface exhibits a superimposed structure of large particles at x = 10 and 20 at.%.  相似文献   

20.
This article describes the surface structure of Norway spruce early somatic embryos (ESEs) as a typical culture with asynchronous development. The microstructure of extracellular matrix covering ESEs were observed using the environmental scanning electron microscope as a primary tool and using the scanning electron microscope with cryo attachment and laser electron microscope as a complementary tool allowing our results to be proven independently. The fresh samples were observed in conditions of the air environment of the environmental scanning electron microscope (ESEM) with the pressure from 550 Pa to 690 Pa and the low temperature of the sample from −18 °C to −22 °C. The samples were studied using two different types of detector to allow studying either the thin surface structure or material composition. The scanning electron microscope with cryo attachment was used for imaging frozen extracellular matrix microstructure with higher resolution. The combination of both electron microscopy methods was suitable for observation of “native” plant samples, allowing correct evaluation of our results, free of error and artifacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号