首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concept of an effect test space, which is equivalent to a D-test space of Dvurečenskij and Pulmannová, is introduced. Connections between effect test space. (E-test space, for short) morphisms, and event-morphisms as well as between algebraic E-test spaces and effect algebras, are studied. Bimorphisms and E-test space tensor products are considered. It is shown that any E-test space admits a unique (up to an isomorphism) universal group and that this group, considered as a test group, determines the E-test space uniquely (up to an isomorphism).  相似文献   

2.
In this paper we investigate the coupling properties of pairs of quadrature observables, showing that, apart from the Weyl relation, they share the same coupling properties as the position-momentum pair. In particular, they are complementary. We determine the marginal observables of a covariant phase space observable with respect to an arbitrary rotated reference frame, and observe that these marginal observables are unsharp quadrature observables. The related distributions constitute the Radon transform of a phase space distribution of the covariant phase space observable. Since the quadrature distributions are the Radon transform of the Wigner function of a state, we also exhibit the relation between the quadrature observables and the tomography observable, and show how to construct the phase space observable from the quadrature observables. Finally, we give a method to measure together with a single measurement scheme any complementary pair of quadrature observables.  相似文献   

3.
Various axiomatic models for unsharp quantum measurements are investigated. These include effect spaces (E-spaces), effect test spaces (E-test spaces), effect algebras, and test groups. It is shown that a test group G is the universal group of an E-test space if and only if G is strongly atomistic. It follows that if G is strongly atomistic, then G is an interpolation group. We then demonstrate that if G is an interpolation group, then G is the universal group of an E-space. Finally, it is shown that an E-space is isomorphic to an E-test space if and only if it is strongly atomistic.  相似文献   

4.
Problem on reconstruction of state of finite-dimension quantum information transfer channel, pure or mixed, by results of measurements of needed number of observables, is considered. It is shown that in general case it is needed to measure incompatible observables in number exceeding by one dimension of space of vectors of state. Each of incompatible observables is measured in its statistically valuable series of measurements. In special case, when one of observables is a non-demolition observable, measurement of the other observables is needed for realization of control of property of non-demolition. In case of paired channel it is shown that results of measurements of observables that do not demolish states of sub-channels are characterized by mutual distribution of probabilities while results of measurement of over-classical observables are characterized by mutual correlation only. This correlation vanishes completely in case of pure unentangled states.  相似文献   

5.
A fuzzy observable is regarded as a smearing of a sharp observable, and the structure of covariant fuzzy observables is studied. It is shown that the covariant coarse-grainings of sharp observables are exactly the covariant fuzzy observables. A necessary and sufficient condition for a covariant fuzzy observable to be informationally equivalent to the corresponding sharp observable is given.  相似文献   

6.
Apart from serving as a parameter in describing the evolution of a system, time appears also as an observable property of a system in experiments where one measures ‘the time of occurrence’ of an event associated with the system. However, while the observables normally encountered in quantum theory (and characterized by self-adjoint operators or projection-valued measures) correspond to instantaneous measurements, a time of occurrence measurement involves continuous observations being performed on the system to monitor when the event occurs. It is argued that a time of occurrence observable should be represented by a positive-operator-valued measure on the interval over which the experiment is carried out. It is shown that while the requirement of time-translation invariance and the spectral condition rule out the possibility of a self-adjoint time operator (Pauli’s theorem), they do allow for time of occurrence observables to be represented by suitable positive-operator-valued measures. It is also shown that the uncertainty in the time of occurrence of an event satisfies the time-energy uncertainty relation as a consequence of the time-translation invariance, only if the time of occurrence experiment is performed on the entire time axis.  相似文献   

7.
《Physics letters. A》2005,335(1):11-19
The problem as to when two noncommuting observables are considered to have the same value arises commonly, but shows a nontrivial difficulty. Here, an answer is given by establishing the notion of perfect correlations between noncommuting observables and applied to obtain a criterion for precise measurements of a given observable in a given state.  相似文献   

8.
The possibility is discussed that the observable time may be described by a hermitian operator, which is maximal but not hypermaximal. The special example considered regards systems having a continuous energy spectrum with a lower bound. It is shown that in this case physical states can be constructed which are elements of the domain of definition of the time operator and which approximate its eigenfunctions with arbitrary accuracy. Hence time is observable within the limits of the precision of real measuring devices. The situation is thus very similar to that of physical quantities which correspond to hypermaximal operators with continuous spectrum. This suggests that v.Neumann's axiom stating that there is a one-to-one connection between observables and the hypermaximal operators of the Hilbert space of states, is too restrictive.  相似文献   

9.
We explore the ability of experimental physics to uncover the underlying structure of the gravitational Lagrangian describing inflation. While the observable degeneracy of the inflationary parameter space is large, future measurements of observables beyond the adiabatic and tensor two-point functions, such as non-gaussianity or isocurvature modes, might reduce this degeneracy. We show that, even in the absence of such observables, the range of possible inflaton potentials can be reduced with a precision measurement of the tensor spectral index, as might be possible with a direct detection of primordial gravitational waves.  相似文献   

10.
Estimation of shift parameters such as arrival time, phase, angle of rotation, position of a non-relativistic or relativistic particle is considered. An approach from the point of view of quantum estimation theory enables to give a proper definition of the time observable and the position observables of a massless relativistic particle, i.e. observables to which there do not correspond self-adjoint operators. Some new inequalities for estimates of shift parameters are obtained; in particular a rigorous uncertainty relation for coordinates of the photon is established.  相似文献   

11.
Wigner-Yanase skew information could quantify the quantum uncertainty of the observables that are not commuting with a conserved quantity.We present the uncertainty principle for two successive projective measurements in terms of Wigner-Yanase skew information based on a single quantum system.It could capture the incompatibility of the observables,i.e.the lower bound can be nontrivial for the observables that are incompatible with the state of the quanaim system.Furthermore,the lower bound is also constrained by the quantum Fisher information.In addition,we find the complementarity relation between the uncertainties of the observable which operated on the quantum state and the other observable that performed on the post-measured quantum state and the uncertainties formed by the non-degenerate quantum observables performed on the quantum state,respectively.  相似文献   

12.
13.
Quantum limitations arising in measurements of a classical force acting on a quantum harmonic oscillator are studied in connection with the problem of increasing the sensitivity of gravity wave experiments. The physical nature of possible limits of sensitivity is elucidated. It originates in a degree of an uncertainty of an observable used for detecting an external force. This uncertainty can be made as small as desired for all moments of time for the observables corresponding to quantum integrals of motion. Advantages of integrals of motion with continuous spectra (like the operator of the initial coordinate) over integrals with discrete spectra (like energy) are discussed. An example of an observable suitable for exact continuous measurements of an external force independently on the initial state of the system—the difference link operator—is given. The general rule for constructing such “optimal observables” can be derived from the quantum optimal filtration theory. It is shown using Ehrenfest's theorem that no quantum limitations exist in principle for the accuracy of measurements of an external classical force acting on an arbitrary quantum system: limitations can appear only due to nonadequate measuring procedures. The general problem of finding the initial quantum states possessing the best sensitivity to an external force is formulated. The parametrically excited oscillator is briefly discussed, and it is shown that measuring the suitable integral of motion one can achieve the great gain in sensitivity. The role of quantum interference effects is emphasized.  相似文献   

14.
We make a detailed study of Bell-type inequalities based on correlations between measurements of continuous observables performed on trapped molecular systems. We show that, in general, when an observable has a continuous spectrum which is bounded, one is able to construct non-locality tests sharing common properties with those for two-level systems. The specific observable studied here is molecular spatial orientation, and it can be experimentally measured for single molecules, as required in our protocol. We also provide some useful general properties of the derived inequalities and study their robustness to noise. Finally, we detail possible experimental scenarios and analyse the role played by different experimental parameters.  相似文献   

15.
Systems of fuzzy subsets fulfilling quantum logic axioms with respect to fuzzy connectives are studied. An integral representation of a state on a fuzzy logic is shown. Fuzzy observables and their real-valued mean values are introduced in the obvious way. Using the relationship between fuzzy observables and fuzzy real-valued random variables, a fuzzy real-valued mean value of a fuzzy observable is introduced. The relationship between both types of mean values is studied and an example is presented.  相似文献   

16.
Quantum theory does not only predict probabilities, but also relative phases for any experiment, that involves measurements of an ensemble of systems at different moments of time. We argue, that any operational formulation of quantum theory needs an algebra of observables and an object that incorporates the information about relative phases and probabilities. The latter is the (de)coherence functional, introduced by the consistent histories approach to quantum theory. The acceptance of relative phases as a primitive ingredient of any quantum theory, liberates us from the need to use a Hilbert space and non-commutative observables. It is shown, that quantum phenomena are adequately described by a theory of relative phases and non-additive probabilities on the classical phase space. The only difference lies on the type of observables that correspond to sharp measurements. This class of theories does not suffer from the consequences of Bell's theorem (it is not a theory of Kolmogorov probabilities) and Kochen–Specker's theorem (it has distributive logic). We discuss its predictability properties, the meaning of the classical limit and attempt to see if it can be experimentally distinguished from standard quantum theory. Our construction is operational and statistical, in the spirit of Copenhagen, but makes plausible the existence of a realist, geometric theory for individual quantum systems.  相似文献   

17.
A solution to the measurement problem of quantum mechanics is proposed within the framework of an intepretation according to which only quantum systems with an infinite number of degrees of freedom have determinate properties, i.e., determinate values for (some) observables of the theory. The important feature of the infinite case is the existence of many inequivalent irreducible Hilbert space representations of the algebra of observables, which leads, in effect, to a restriction on the superposition principle, and hence the possibility of defining (macro-) observables which commute with every observable. Such observables have determinate values which are not subject to quantum interference effects. A measurement process is schematized as an interaction between a microsystem and a macrosystem, idealized as an infinite quantum system, and it is shown that there exists a unitary transformation which transforms the initial pure state of the composite system in a finite time (the duration of the interaction) into the required mixture of disjoint states.  相似文献   

18.
《Physics letters. A》1988,128(9):458-462
Quantum potential theory points to the possibility and usefulness of assigning values of the momentum observable at each point on the configuration space. We give a formulation of such an idea for all observables together with an analysis of the meaning of such local values within quantum mechanics. The formulation is easily extended to obtain generalised phase space distributions.  相似文献   

19.
Numerical experiment in Lipkin model shows that, in quantum system with global chaotic classical limit, the temporal mean of the expectation value of an observable is approximately equal to the average over the basic states of Hilbert space, if the wavefunction is initially either a coherent wave packet or the common eigenstates of a complete set of observables, and the observable is independent of the Hamiltonian. The mechanism is the absence of KAM barrier which prevents the spread of wavefunction. This can serve as a quantum signature of classical chaos.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号