首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A femtosecond laser pulse with power density of 1013 to 1014 W/cm2 incident on a metal target causes ablation and ejection of the surface layer. The ejected laser plume has a complicated structure. At the leading front of the plume, there is a spall layer where the material is in a molten state. The spall layer is a remarkable part of the plume in that the liquid-phase density does not decrease with time elapsed. This paper reports theoretical and experimental studies of the formation, structure, and ejection of the laser plume. The results of molecular dynamics simulations and a theoretical survey of plume structure based on these results are presented. It is shown that the plume has no spall layer when the pulse fluence exceeds an evaporation threshold F ev. As the fluence increases from the ablation threshold F a to F ev, the spall-layer thickness for gold decreases from 100 nm to a few lattice constants. Experimental results support theoretical calculations. Microinterferometry combined with a pump-probe technique is used to obtain new quantitative data on spallation dynamics for gold. The ablation threshold is evaluated, the characteristic crater shape and depth are determined, and the evaporation threshold is estimated.  相似文献   

2.
Recent experiments have utilizied high-power subpicosecond laser pulses to effect the ultrafast heating of a condensed material to temperatures far above the critical temperature. Using optical diagnostics it was established that a complicated density profile with sharp gradients, differing substantially from an ordinary rarefaction wave, forms in the expanding heated matter. The present letter is devoted to the analysis of the expansion of matter under the conditions of the experiments reported by D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, Appl. Surf. Science 109/110, 1 (1996); K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri et al., Proc. Soc. Photo-Opt. Instum. Eng. 3343, 46 (1998); and, K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri et al., Phys. Rev. Lett. 81, 224 (1998). It is shown that if the unloading adiabat passes through the two-phase region, a thin liquid shell filled with low-density two-phase matter forms in the expanding material. The shell moves with a constant velocity. The velocity in the two-phase material is a linear function of the coordinate (flow with uniform deformation), and the density is independent of the coordinate and decreases with time as t −1. Pis’ma Zh. éksp. Teor. Fiz. 69, No. 4, 284–289 (25 February 1999)  相似文献   

3.
《Physics letters. A》2002,300(1):76-81
By using the corrected solutions for an ultrashort laser pulse, we study the laser-driven electron violent acceleration in vacuum. Our simulations demonstrate that an ultrashort laser pulse with an intensity a0eE0/meωc=3 can accelerate electrons to an energy more than 0.5 GeV. The scaling laws for the net energy gain in different pulse length and laser radius at focus are also studied. Its acceleration mechanism is found to be ponderomotive acceleration.  相似文献   

4.
We report experimental and theoretical investigations of the evolution of super-broadened spectrum generation by intense 50-fs pulses propagating in bulk fused silica. Based on good agreement between the experimental results and numerical simulations, a mechanism of supercontinuum generation (SCG) is proposed. At first, both self-phase modulation (SPM) and stimulated Raman scattering (SRS) contribute substantially but slowly to the broadening before filament formation takes place. After filamentation, a plasma grows rapidly and asymmetric spectral broadening results in a blue-shifted spectrum extending to about 400 nm. A time-resolved experiment of the SCG was also performed using a double-pump technique. The temporal behavior suggests that the vibrational mode excited by the stimulated Raman process by the first pulse contributes to the occurrence of self-focusing. PACS 42.65.Re; 42.25.Bs  相似文献   

5.
Based on the coupled wave theory of Kogelnik and Fourier optics, the time-domain diffraction characteristics of tramsmitted multilayer volume holographic grating (MVHG) under an ultrashort pulse readout are investigated. It is shown that the temporal diffraction characteristics depend not only on the numbers of the grating layers, but also on the thicknesses of the grating layers and buffer layers, grating period and the refractive index modulation. Furthermore, using group velocity dispersion we give explanation on the time-delay of diffraction pulse with respect to the center of the readout pulse. Results of our discussion may find applications in optical communications, pulse shaping and processing.  相似文献   

6.
Interaction between a weakly divergent optical beam and an acoustic wave generated in the range 1.0–2.5 GHz by an inphase multielement electroacoustic piezoelectric transducer is analyzed. A piezoelectric (Y + 36°)-cut LiNbO3 plate is fixed on the surface of an X-cut LiNbO3 acoustic duct with the help of metallic sublayers (Cr, Cu, In, Cu, or Cr). The inphase structure of the transducer is formed by the upper electrodes inter-connected by short conductors. The signal is applied through a coaxial Chebyshev transformer. The efficiencies of electroacoustic conversion and acoustooptic interaction are calculated as functions of frequency. The experimental setup, method, and results are described.  相似文献   

7.
Acoustic waves generated by a laser line pulse in a hollow cylinder   总被引:1,自引:0,他引:1  
Pan Y  Li L  Rossignol C  Audoin B  Chigarev N 《Ultrasonics》2006,44(Z1):e843-e847
A theoretical solution is proposed to predict acoustic waves generated in a homogeneous and isotropic hollow cylinder by a laser line source under either ablation or thermoelastic regime. The Fourier series expansion is introduced for one spatial coordinate to solve this transient response problem. Theoretical displacements are obtained in both regimes for aluminum hollow cylinders with various thickness including a rod of the same size. The corresponding displacements are observed experimentally by the laser ultrasonic technique. Agreement has been found in the time arrival, shape and relative amplitude of surface waves and various longitudinal and transverse bulk waves. These acoustic waves are further identified by the ray trajectory analysis. This work will be helpful when dealing with the inverse problem of the nondestructive evaluation of hollow cylindrical parts.  相似文献   

8.
We report on monotonically positively chirped pulse operation of a hybridly mode-locked thulium fiber laser. Dispersion management was realized with a small-core, high-NA fiber providing normal dispersion in the 2 μm wavelength region. The laser delivered pulses with 0.7 nJ energy at the 1927 nm center wavelength and sub-500-fs pulse duration after compression.  相似文献   

9.
10.
A three-dimensional (3D) model is presented to predict the acoustic waves generated by a laser point pulse in a transversely isotropic cylinder. The Fourier series expansion and the two-dimensional Fourier transform are introduced to calculate the 3D transient response under either the ablation or the thermoelastic generation. The presented physical model and the numerical inverse scheme are applied to a fiber reinforced composite cylinder with a strong anisotropy. Experimental radial displacements of the cylinder surface are detected by the laser ultrasonic technique and analyzed by the ray trajectories for both generation regimes. Corresponding theoretical displacements are obtained numerically and compared to the experimental signals. Good agreement is found between theoretical and experimental results. The focusing effects that anisotropy gives rise to are observed in both theory and experiment under either regime.  相似文献   

11.
The scattering of an ultrashort electromagnetic pulse by atomic particles is described using a consistent quantum-mechanical approach taking into account excitation of a target and nondipole electromagnetic interaction, which is valid in a broad spectral range. This approach is applied to the scattering of single- and few-cycle pulses by a multielectron atom and a hydrogen atom. Scattering spectra are obtained for ultrashort pulses of different durations. The relative contribution of “elastic” scattering of a single-cycle pulse by a hydrogen atom is studied in the high-frequency limit as a function of the carrier frequency and scattering angle.  相似文献   

12.
The possibility of generating an attosecond x-ray pulse in a thin solid-density plasma layer irradiated by a femtosecond laser pulse of ultrarelativistic intensity has been demonstrated in numerical simulation. Changes in the plasma layer parameters during the light pulse result in the generation of a wide, partly continuous radiation spectrum in the layer. The separation of limited parts in the reflected or transmitted light spectrum makes it possible to obtain isolated short electromagnetic pulses with an intensity reaching 1% of the exciting light intensity.  相似文献   

13.
Molecular dynamics (MD) simulation of expansion of quickly heated Lennard-Jones (LJ) crystalline thin film is performed. The heating time is assumed to be much shorter than the characteristic expansion time. Such situation occurs when a femtosecond laser pulse is absorbed by a crystal. We established that plastic rarefaction wave is formed and propagates from the vacuum boundary into solid.  相似文献   

14.
We propose a model describing the destruction of metals under ultrashort intense laser pulses when heated electrons affect the lattice through the direct electron-phonon interaction. The metal consists of hot electrons and a cool lattice. The lattice deformation is estimated immediately after the laser pulse up to the electron temperature relaxation time. The hot electrons are described with help of the Boltzmann and heat conduction equations. We use an equation of motion for the lattice displacements with the electron force included. Estimates of the lattice deformation show that the ablation regime can be achieved. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 3, 195–199 (10 August 1997) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

15.
16.
The published model [Appl. Phys. Lett. 82, 4379-4381 (2003)] for the two-dimensional transient wave propagation in a cylinder is modified to avoid the inherited integration of the numerical inverse scheme. The Fourier series expansion is introduced for one spatial coordinate to resolve the transient response problem: theoretical radial displacements in either the ablation or the thermoelastic regime are obtained with little numerical noise and short computation time. The normal mode expansion method fails to deliver results with the same accuracy. Acoustic waves are fully identified by the ray trajectory analysis. These identified waves are further verified on the experimental results observed with the laser ultrasonic technique.  相似文献   

17.
We predict photoelectron angular distributions for double ionization of Li- by both weak and intense ultrashort, linearly polarized laser pulses by direct numerical integration of the three-dimensional, time-dependent Schr?dinger equation. Li- is treated as a two-active electron system. Near threshold, for low intensity we recover general features of angular distributions for one-photon double ionization. For the intense field (multiphoton) case, the photoelectron angular distribution changes significantly, particularly in directions parallel and perpendicular to the laser polarization axis.  相似文献   

18.
The continuum generation by intense femtosecond IR laser pulses focused in air including the effect of third-harmonic generation is investigated. We have used a theoretical model that includes the full spatio-temporal dynamics of both the fundamental and the third-harmonic pulses. Results of our numerical calculations show that a two-color filamentation effect occurs, in which the third-harmonic conversion efficiency remains almost constant over the whole filament length. It is found that this effect is rather independent of the wavelength of the input beam and the focal geometry. During the filamentation process the third-harmonic pulse itself generates a broad continuum, which can even overlap with the continuum of the fundamental pulse for the longer pump wavelengths. In consequence, the continuum generation generated by intense IR laser pulses is further extended into the UV. PACS 42.65.Jx; 42.65.Ky; 52.35.Mw  相似文献   

19.
The possibility that fast electrons can escape in a direction close to the trajectory of a reflected ultrashort laser pulse at extremely high laser radiation fluxes is examined analytically and numerically. Analytic estimates are made of the feasibility of forming electron bursts in the plasma and of their subsequent motion. The self-consistent, collisionless motion of a plasma acted on by specified incident and reflected ultrashort laser pulses is modeled in two dimensions by the particle-in-cell method. It is shown that a substantial number of electrons located in the subcritical region are gathered into bunches by the resultant forces and escape to the vacuum in a direction different from the normal to the target surface within a narrow range of solid angles. This demonstrates the feasibility of laser acceleration of an electron burst during reflection of an ultrashort laser pulse from a solid target. Zh. éksp. Teor. Fiz. 116, 1184–1197 (October 1999)  相似文献   

20.
为了探究声表面波与不同深度微裂纹缺陷相互作用的关系,将脉冲激光作用于一系列不同缺陷的试件铝板上进行线光源激励,激发激光超声波。用超声传感器接收在铝板中传播的激光超声信号,通过数字荧光示波器采集激光超声在铝板中的传播数据。对采集到的反射波数据进行分离谱分离过程得到的铝板中激光超声的时域分布和透射波数据进行频域分析。实验发现:缺陷深度影响着反射回波两峰值特征点到达时间差,两者之间近似线性关系,也影响着透射波的截止频率且二者呈现递减关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号