首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Olivine-type LiFePO4 is one of the most promising cathode materials for lithium-ion batteries, but its poor conductivity and low lithium-ion diffusion limit its practical application. The electronic conductivity of LiFePO4 can be improved by carbon coating and metal doping. A small amount of La-ion was added via ball milling by a solid-state reaction method. The samples were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM)/mapping, differential scanning calorimetry (DSC), transmission electron microscopy (TEM)/energy dispersive X-ray spectroscopy (EDS), and total organic carbon (TOC). Their electrochemical properties were investigated by cyclic voltammetry, four-point probe conductivity measurements, and galvanostatic charge and discharge tests. The results indicate that these La-ion dopants do not affect the structure of the material but considerably improve its rate capacity performance and cyclic stability. Among the materials, the LiFe0.99La0.01PO4/C composite presents the best electrochemical behavior, with a discharge capacity of 156 mAh g?1 between 2.8 and 4.0 V at a 0.2 C-rate compared to 104 mAh g?1 for undoped LiFePO4. Its capacity retention is 80% after 497 cycles for LiFe0.99La0.01PO4/C samples. Such a significant improvement in electrochemical performance should be partly related to the enhanced electronic conductivities (from 5.88?×?10?6 to 2.82?×?10?3 S cm?1) and probably the mobility of Li+ ion in the doped samples. The LiFe0.99La0.01PO4/C composite developed here could be used as a cathode material for lithium-ion batteries.  相似文献   

2.
Nanocrystalline LiFePO4 and LiFe0.97Sn0.03PO4 cathode materials were synthesized by an inorganic-based sol–gel route. The physicochemical properties of samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and elemental mapping. The doping effect of Sn on the electrochemical performance of LiFePO4 cathode material was extensively investigated. The results showed that the doping of tin was beneficial to refine the particle size, increase the electrical conductivity, and facilitate the lithium-ion diffusion, which contributed to the improvement of the electrochemical properties of LiFePO4, especially the high-rate charge/discharge performance. At the low discharge rate of 0.5 C, the LiFe0.97Sn0.03PO4 sample delivered a specific capacity of 158 mAh g−1, as compared with 147 mAh g−1 of the pristine LiFePO4. At higher C-rate, the doping sample exhibited more excellent discharge performance. LiFe0.97Sn0.03PO4 delivered specific capacity of 146 and 128 mAh g−1 at 5 C and 10 C, respectively, in comparison with 119 and 107 mAh g−1 for LiFePO4. Moreover, the doping of Sn did not influence the cycle capability, even at 10 C.  相似文献   

3.
Cathode material LiFe0.7?V0.2PO4/C is successfully synthesized by multistep sintering through carbon thermal reaction including 650 °C for 10 h and 750 °C for 6 h. The crystal structure and surface morphology of the synthesized materials are characterized by X-ray diffractometer and scanning electron microscope, respectively. Cycle voltammetry, electrochemical impedance spectroscopy, and charge–discharge test are used to investigate the electrochemical performances of these samples. The results revealed that the synthesized LiFe0.7?V0.2PO4/C material simultaneously contains olivine structure LiFePO4 and monoclinic structure Li3V2(PO4)3. It shows improved conductivity, Li-ion diffusion coefficient, excellent charge/discharge performance, and reversibility due to both the incorporation of Li3V2(PO4)3 fast ion conductor and the employed multistep sintering. The initial discharge specific capacities of LiFe0.7?V0.2PO4/C by multistep sintering are 167.8, 154.7, and 140.8 mAh g?1 at 0.5, 1, and 2 C, respectively. After a total of 230 cycles at different rates, the sample still shows good performances. After 100 cycles at 2 C, the capacity retention is 99.1 %, and the capacity is 139.6 mAh g?1. The LiFe0.7?V0.2PO4/C material synthesized by this method can be used as a cathode material for advanced lithium-ion batteries.  相似文献   

4.
The modification techniques of applying carbon coating on particle surface and doping vanadium at Fe site were applied to make the LiFePO4 cathode materials achieve high rate performance in lithium ion batteries. To design and synthesize these LiFe(1?x)V x PO4/C (x?=?0, 0.02, 0.05, or 0.08) composites, an aqueous solution–evaporation method was taken, in which every kind of raw material was distributed at a high degree of uniformity. The LiFe0.95V0.05PO4/2.57 wt% C composite displayed the best electrochemical performances. At rates of 0.1, 0.5, 2, 5, and 10 C (1 C?=?170 mAg?1), it delivered a discharge capacity of 157.8, 156.9, 149, 139.6, and 130.1 mAh g?1, respectively. The composite exhibited perfect cycle stabilities as well, maintaining 100 % (0.5 C), 99.7 % (2 C), 98.9 % (5 C), and 96.6 % (10 C) of the first discharge capacity after 100 cycles at different rates, respectively.  相似文献   

5.
《中国化学会会志》2018,65(8):977-981
LiFePO4/C and LiFe1–xNb xPO4/C composites were synthesized using a sol–gel method. The influence of niobium doping on the constitution, morphology, and electrochemical properties of the samples was studied in detail. X‐Ray diffraction patterns indicate that appropriate Nb doping does not alter seriously the structure of LiFePO4. Electrochemical characterization of the electrodes showed that the Li‐ion batteries based on LiFe1–xNb xPO4/C electrode exhibited better charge/discharge performance than those based on LiFePO4/C. The LiFe0.95Nb0.05PO4/C‐based cell had the specific capacity of 157, 121, and 85 mAh/g at 0.2, 2, and 5 C, respectively, in comparison with 126, 94, and 52 mAh/g for the LiFePO4/C cell. The results show that the addition of niobium promotes the electrochemical performance of the materials especially at high charge/discharge rates of the battery.  相似文献   

6.
Pure LiFePO4 and LiNi x Fe1?x PO4/C (x?=?0.00–0.20) nanocomposite cathode materials have been synthesized by cheap and convenient sol–gel-assisted carbothermal reduction method. X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy, and inductively coupled plasma have been used to study the phase, morphology, and chemical composition of un-doped and Ni-doped materials. XRD patterns display the slight shrinkage in crystal lattice of LiFePO4 after Ni2+ doping. The SEM images have revealed that Ni-doped particles are not agglomerated and the particle sizes are practically homogeneously distributed. The particle size is found between 50 and 100 nm for LiNi0.20Fe0.80PO4/C sample. The discharge capacity at 0.2 C rate has increased up to 155 mAh g?1 for the LiNi0.05Fe0.95PO4/C sample and good capacity retention of 99.1 % over 100 cycles, while that of the unsubstituted LiFePO4/C and pure LiFePO4 has showed only 122 and 89 mAh g?1, respectively. Doping with Ni has a noticeable effect on improving its electrical conductivity. However, serious electrochemical declension will occur when its doping density is beyond 0.05 mol LiNi0.20Fe0.80PO4/C electrode shows only 118 mAh g?1, which is less than un-doped LiFePO4/C sample at 0.2 C. The cycling voltammogram demonstrates that Ni-doped LiNi0.05Fe0.95PO4/C electrode has more stable lattice structure, enhanced conductivity, and diffusion coefficient of Li+ ions, in which Ni2+ is regarded to act as a column in crystal lattice structure to prevent the collapse during cycling process.  相似文献   

7.
以LiH2PO4和FeC2O4·2H2O为原料, 采用分步添加聚乙烯醇和葡萄糖两种碳源的方式, 通过两步固相法合成了碳包覆的LiFePO4材料. 700℃下处理的产物结晶良好, 颗粒分布均匀, 具有良好的电化学性能, 0.1C和1C倍率下放电比容量分别为157.3 和138.3 mAh·g-1. 在碳包覆的基础上, 选择高价Nb5+进行铁位取代获得了复合改性的LiFe1-xNbxPO4/C (x=0.005, 0.01, 0.015, 0.02)材料. 优化的LiFe0.99Nb0.01PO4/C 材料显示了良好的倍率充放电能力和循环稳定性, 0.1C和5C倍率下放电比容量分别为160.5 和136.0 mAh·g-1, 5C倍率下循环50 次后比容量保持在134.8 mAh·g-1, 容量保持率为99.1%. 循环伏安测试结果表明, Nb5+离子掺杂减少了锂离子扩散阻力, 降低了充放电过程中的动力学限制, 提高了电极的可逆性.  相似文献   

8.
Li3Ni x V2?x (PO4)3/C (x?=?0, 0.02, 0.04 and 0.06) samples have been synthesized via an improved sol–gel method. X-ray diffraction patterns indicate that the structure of the prepared samples retains monoclinic, and the single phase has not been changed with Ni doping. From the analysis of electrochemical performance, the Li3Ni0.04?V1.96(PO4)3/C sample exhibits the best electrochemical property. It delivers a discharge capacity of 112.1 mAh?g?1 with capacity retention of 95.2 % over 300 cycles at 10 C rate in the range of 3.0–4.8 V; cyclic voltammetry and electrochemical impedance spectra testing further prove that the electrochemical reversibility and lithium ion diffusion behavior of Li3V2(PO4)3 have also been effectively improved through Ni doping.  相似文献   

9.
The xLiFePO4·yLi3V2(PO4)3/C cathode materials are synthesized by a sol spray drying method. X-ray diffraction results reveal that the xLiFePO4·yLi3V2(PO4)3/C (x,y?≠?0) composites are composed of LiFePO4 and Li3V2(PO4)3 phases, and no impurities are detected. The samples show spherical particles with the size of 0.5–5 μm, and the tap densities of all the samples are higher than 1.5 g cm?3. Electrochemical tests show that the xLiFePO4·Li3V2(PO4)3/C (x,y?≠?0) composites exhibit much better performance than the single LiFePO4/C or Li3V2(PO4)3/C. Among all the samples, 3LiFePO4·Li3V2(PO4)3/C possesses the best comprehensive performance in terms of the discharge capacity, average working voltage, and rate capability. At 1, 5, and 10 C rates, the sample shows first discharge capacities of 152.0, 134.3, and 116.8 mAh g?1 and capacity retentions of 99.2, 98.2, and 97.7 % after 100 cycles, respectively. The excellent electrochemical performance of micron-sized xLiFePO4·Li3V2(PO4)3/C (x,y?≠?0) powders is owing to the homogeneous mixing of reactants at a molecular level by sol spray drying, the incorporation of fast ion conductor Li3V2(PO4)3, and the mutual doping in LiFePO4 and Li3V2(PO4)3.  相似文献   

10.
A series of LiMn1-x V x PO4 samples have been synthesized successfully via a conventional solid-state reaction method. The active materials are characterized by x-ray diffraction, x-ray photoelectron spectroscopy, and scanning electron microscopy. The electrochemical performances of the samples are tested using cyclic voltammetry, electrochemical impedance spectroscopy, and charge/discharge measurement techniques. It is confirmed that the samples are in single phase when the content of vanadium (x) is lower than 0.05. If that content is higher than 0.1, the samples are shown to contain an additional conductive phase of Li3V2(PO4)3. The vanadium doping significantly enhances the electrochemical properties of LiMnPO4. It is underlined that the optimal ratio for a low-vanadium doping with the best electrochemical performance is 0.1 and this material exhibits a corresponding initial charge and discharge capacity of 98.9 and 98.1 mAh g?1 at 0.1 C under 50 °C. The capacity retention is higher than 99 % after 30 cycles. The dramatic electrochemical improvement of the LiMnPO4 samples is ascribed to the strengthened ability of lithium-ion diffusion and enhanced electronic conductivity for the V-doped samples.  相似文献   

11.
Olivine LiFePO4/C cathode materials for lithium ion batteries were synthesized using monodisperse polystyrene (PS) nano-spheres and other carbon sources. The structure, morphology, and electrochemical performance of LiFePO4/C were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), galvanostatic charge–discharge tests, electrochemical impedance spectroscopy (EIS) measurements, and Raman spectroscopy measurements. The results demonstrated that LiFePO4/C materials have an ordered olivine-type structure with small particle sizes. Electrochemical analyses showed that the LiFePO4/C cathode material synthesized from 7 wt.% PS nano-spheres delivers an initial discharge capacity of 167 mAh g-1 (very close to the theoretical capacity of 170 mAh g-1) at 0.1 C rate cycled between 2.5 and 4.1 V with excellent capacity retention after 50 cycles. According to Raman spectroscopy and EIS analysis, this composite had a lower I D/I G, sp 3/sp 2 peak ratio, charge transfer resistance, and a higher exchange current density, indicating an improved electrochemical performance, due to the increased proportion of graphite-like carbon formed during pyrolysis of PS nano-spheres, containing functionalized aromatic groups.  相似文献   

12.
LiFePO4/C and LiYb0.02Fe0.98PO4/C composite cathode materials were synthesized by simple solution technique. The samples were characterized by X-ray diffraction, scanning electron microscope, and thermogravimetric–differential thermal analysis. Their electrochemical properties were investigated by cyclic voltammetry, four-point probe conductivity measurements, and galvanostatic charge and discharge tests. The carbon-coated and Yb3+-doped LiFePO4 sample exhibited an enhanced electronic conductivity of 1.9 × 10?3 Scm?1, and a specific discharge capacity of 146 mAhg?1 at 0.1 C. The results suggest that the improvement of the electrochemical performance can be attributed to the ytterbium doping, which facilitates the phase transformation between triphylite and heterosite during cycling, and the conductivity improvement by carbon coating.  相似文献   

13.
The effect of fluorine doping on the electrochemical performance of LiFePO4/C cathode material is investigated. The stoichiometric proportion of LiFe(PO4)1−x F3x /C (x = 0.01, 0.05, 0.1, 0.2) materials was synthesized by a solid-state carbothermal reduction route at 650 °C using NH4F as dopant. X-ray diffraction, scanning electron microscope, energy-dispersive X-ray, and X-ray photoelectron spectroscopy analyses demonstrate that fluorine can be incorporated into LiFePO4/C without altering the olivine structure, but slightly changing the lattice parameters and having little effect on the particle sizes. However, heavy fluorine doping can bring in impurities. Fluorine doping in LiFePO4/C results in good reversible capacity and rate capability. LiFe(PO4)0.95 F0.15/C exhibits highest initial capacity and best rate performance. Its discharge capacities at 0.1 and 5 C rates are 156.1 and 119.1 mAh g−1, respectively. LiFe(PO4)0.95 F0.15/C also presents an obviously better cycle life than the other samples. We attribute the improvement of the electrochemical performance to the smaller charge transfer resistance (R ct) and influence of fluorine on the PO43− polyanion in LiFePO4/C.  相似文献   

14.
Nano-carbon connections among carbon-coated LiFe0.8Mn0.2PO4 grains are successfully constructed using polyacrylic acid and sucrose as carbon sources by sol-gel method, which can improve the electrochemical performance of LiFe0.8Mn0.2PO4. Samples were characterised by X-ray diffraction, scanning electron microscopy and electrochemical tests. The electrochemical tests show LiFe0.8Mn0.2PO4 grains connected by nano-carbon networks obtain the discharge specific capacity of 165 mA h g?1 at 0.1 C rate and excellent rate capability. Its specific capacity reaches 122 mA h g?1 at 5 C rate. Its capacity retention at 5 C rate attains 97% cycled 100 cycles. Therefore the construction of nano-carbon networks offers an effective and convenient technique to improve the specific capacities and rate capabilities of electrode materials of low electronic conductivity.  相似文献   

15.
The olivine-typed cathode materials of LiFePO4were prepared via solid-state reaction under argon atmosphere and co-doped by manganese and fluorine to improve their electrochemical performances. The crystal structure, morphology, and electrochemical properties of the prepared samples were investigated using X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectrum, X-ray photoelectron spectroscopy, cyclic voltammetry, and charge–discharge cycle measurements. The result showed that the electrochemical performance of LiFePO4 had been improved dramatically by Mn–F co-doping. The initial discharge capacity of LiFe0.99Mn0.01 (PO4)2.99/3F0.01/C samples reached 140.2 mAh/g at 1C rate and only had a small amount of fading in 50 cycles.  相似文献   

16.
A fast and convenient sol–gel route was developed to synthesize LiFePO4/C composite cathode material, and the sol–gel process can be finished in less than an hour. Polyethyleneglycol (PEG), d-fructose, 1-hexadecanol, and cinnamic acid were firstly introduced to non-aqueous sol–gel system as structure modifiers and carbon sources. The samples were characterized by X-ray powder diffraction, field emission scanning electron microscopy, and elemental analysis measurements. Electrochemical performances of LiFePO4/C composite cathode materials were characterized by galvanostatic charge/discharge and AC impedance measurements. The material obtained using compound additives of PEG and d-fructose presented good electrochemical performance with a specific capacity of 157.7 mAh g−1 at discharge rate 0.2 C, and the discharge capacity remained about 153.6 mAh g−1 after 50 cycles. The results indicated that the improved electrochemical performance originated mainly from the microporous network structure, well crystalline particles, and the increased electronic conductivity by proper carbon coating (3.11%).  相似文献   

17.
Dy doping and carbon coating are adopted to synthesize a LiFePO4 cathode material in a simple solution environment. The samples were characterized by X‐ray diffraction (XRD) and scanning electron microscopy (SEM). Their electrochemical properties were investigated by cyclic voltammetry (CV) and galvanostatic charge‐discharge tests. An initial discharge capacity of 153 mAh/g was achieved for the LiDy0.02Fe0.98PO4/C composite cathode with a rate of 0.1 C. In addition the electronic conductivity of Dy doped LiFePO4/C was enhanced to 1.9 × 10?2 Scm?1. The results suggest that the improvement of the electrochemical properties are attributed to the dysprosium doping and carbon coating which facilitates the phase transformation between triphylite and heterosite during cycling. XRD data indicate that doping did not destroy the lattice structure of LiFePO4. To evaluate the effect of Dy substitution, cyclic voltammetry was used at room temperature. prepared. From Cv measurement a more symmetric curve with smaller interval between the cathodic and anodic peak current was obtained by Dy substitution. This denoted a decreasing of polarization with Dy substitution, which illustrated an enhancement of electrochemical performances.  相似文献   

18.
Using the cheap raw materials lithium carbonate, iron phosphate, and carbon, LiFePO4/C composite can be obtained from the carbothermal reduction method. X-ray diffraction (XRD) and scanning electronic microscope (SEM) observations were used to investigate the structure and morphology of LiFePO4/C. The LiFePO4 particles were coated by smaller carbon particles. LiFePO4/C obtained at 750 °C presents good electrochemical performance with an initial discharge capacity of 133 mAh/g, capacity retention of 128 mAh/g after 20 cycles, and a diffusion coefficient of lithium ions in the LiFePO4/C of 8.80?×?10?13 cm2/s, which is just a little lower than that of LiFePO4/C obtained from the solid-state reaction (9.20?×?10?13 cm2/s) by using FeC2O4 as a precursor.  相似文献   

19.
A solid-state reaction process with poly(vinyl alcohol) as the carbon source is developed to synthesize LiFePO4-based active powders with or without modification assistance of a small amount of Li3V2(PO4)3. The samples are analyzed by X-ray diffraction, scanning/transmission electron microscopy, and Raman spectroscopy. It is found that, in addition to the minor effect of a lattice doping in LiFePO4 by substituting a tiny fraction of Fe2+ ions with V3+ ions, the change in the form of carbon coating on the surface of LiFePO4 plays a more important role to improve the electrochemical properties. The carbon changes partially from sp3 to sp2 hybridization and thus causes the significant rise in electronic conductivity in the Li3V2(PO4)3-modified LiFePO4 samples. Compared with the carbon-coated baseline LiFePO4, the composite material 0.9LiFePO4·0.1Li3V2(PO4)3 shows totally different carbon morphology and much better electrochemical properties. It delivers specific capacities of 143.6 mAh g?1 at 10 C rate and 119.2 mAh g?1 at 20 C rate, respectively. Even at the low temperature of ?20 °C, it delivers a specific capacity of 118.4 mAh g?1 at 0.2 C.  相似文献   

20.
Triclinic LiVPO4F and monoclinic Li3V2(PO4)3 are synthesized through a soft chemical process with mechanical activation assist, followed by annealing. In this process, ascorbic acid is used as reducing agent as well as carbon source. The as-prepared samples are coated with amorphous carbon. XPS analysis results show the expected valency states of ions in LiVPO4F and Li3V2(PO4)3. The electrochemical properties of the prepared LiVPO4F/C and Li3V2(PO4)3/C cathodes are evaluated. The as-prepared LiVPO4F/C cathode shows an initial discharge specific capacity of 140?±?3 mAh?g?1 at 30 mA?g?1 in the voltage range of 3.0~4.4 V, compared with that of 138?±?3 mAh?g?1 possessed by Li3V2(PO4)3/C. Both samples exhibit good cycle performance at different current densities. The capacity delivered by LiVPO4F remains 95.5 and 91.7 % of its initial discharge capacity after 50 cycles at 150 and 750 mA?g?1, respectively, while 97.4 and 90.6 % for Li3V2(PO4)3/C. But the rate capability of LiVPO4F/C is not so good compared with as-prepared Li3V2(PO4)3/C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号