首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The optical properties of Tl2InGaSe4 layered single crystals have been studied through the transmission and reflection measurements in the wavelength range of 500‐1100 nm. The analysis of room temperature absorption data revealed the presence of both optical indirect and direct transitions with band gap energies of 1.86 and 2.05 eV, respectively. Transmission measurements carried out in the temperature range of 10‐300 K revealed that the rate of change of the indirect band gap with temperature is γ = – 4.4 × 10‐4 eV/K. The absolute zero value of the band gap energy was obtained as Egi(0) = 1.95 eV. The dispersion of the refractive index is discussed in terms of the single oscillator model. The refractive index dispersion parameters: oscillator wavelength and strength were found to be 2.53 × 10–7 m and 9.64 × 1013 m–2, respectively. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Single crystals of L‐Arginine Fluoride (LAF) have been grown by the slow evaporation technique, and the crystalline perfection was studied by HRXRD. Optical absorption studies reveal the lower cut off wavelength (280 nm) and the band gap (5.1 eV). The dielectric constant and dielectric loss have been measured as a function of frequency (42 Hz–5 MHz) and temperature (307‐368K) and the activation energy is 77 μeV. The thermal transport properties such as thermal conductivity (0.88 ± 0.02 W/mK) and specific heat capacity (482±24 J/kg/K) have been estimated by the photopyroelectric technique. The nonlinear refractive index n2, is found to be of the order of 10−13 cm2/W by the Z‐scan technique.  相似文献   

3.
The optical properties of Tl2In2S3Se layered single crystals have been studied by means of transmission and reflection measurements in the wavelength range of 450‐1100 nm. The analysis of the absorption data revealed the presence of both optical indirect and direct transitions with energy band gaps of 2.16 and 2.42 eV, respectively. The observed coexistence of indirect and direct energy band gaps is related to the anisotropy of the Tl‐containing layered crystals. The dispersion of the refractive index is discussed in terms of the Wemple‐DiDomenico single‐effective‐oscillator model. The refractive index dispersion parameters: oscillator energy, dispersion energy, oscillator strength and zero‐frequency refractive index were found to be 4.78 eV, 43.58 eV, 13.18 × 1013 m–2 and 3.18, respectively. From X‐ray powder diffraction study, the parameters of monoclinic unit cell were determined. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Bis(tetrabutylammonium)bis(2‐thioxo‐1,3‐dithiole‐4,5‐dithiolato)mercurate(II) was prepared and characterized by elemental analyses, electronic absorption, infrared and X‐ray powder diffraction spectroscopy. The specific heat of the crystal was measured to be 1878.2 J.mol–1K–1 at 300 K. The thermal decomposition process was investigated by means of thermogravimetric analysis and differential thermal analysis measurements in air together with infrared and X‐ray powder diffraction spectra. The third‐order nonlinear optical properties at 800 nm were measured by femtosecond optical Kerr gate technique by using CS2 as reference. The third‐order optical susceptibility of its acetone solution at the concentration of 9.27 × 10–4 M was obtained to be 2.53 × 10–14 esu. The second‐order hyperpolarizability was estimated to be 1.7 × 10–32 esu and the response time was about 226 fs. The third order nonlinear optical properties at 532 nm were investigated by using the Z‐scan technique with 20 ps. It exhibited self‐focusing effect and saturable absorption. The second molecular hyperpolarizability was estimated to be 8.4 × 10–32 esu. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
This paper deals with the preparation of Zirconium Nitride films by DC reactive magnetron sputtering. Films were deposited on silicon substrates at room temperature. Nitrogen partial pressure was varied from 4 × 10−5 to 10 × 10−5 m bar and the effect on the structural, electrical, optical properties of the films was systematically studied. The films formed at a nitrogen pressure of 6 × 10−5 mbar showed low electrical resistivity of 1.726 × 10−3 Ω.cm. The deposited films were found to be crystalline with refractive index and extinction coefficient 1.95 and 0.4352 respectively. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Undoped and Indium doped tin disulphide (SnS2) thin films had been deposited onto glass substrates at Ts = 300 °C using spray pyrolysis technique under atmospheric pressure with stannous chloride, indium chloride and thiourea as precursors. The structural, optical and electrical properties of the deposited films were characterized. The XRD pattern revealed that the undoped and doped films had preferred orientation along (002) plane with hexagonal structure. FESEM micrographs had shown that morphologies of the films changed with indium doping. Optical constant such as refractive index (n), extinction coefficient (k), real and imaginary parts of dielectric constants were evaluated from transmittance and reflectance spectra in UV‐Visible spectroscopy. The optical absorption data were used to determine the band gap energy and it was found to be 2.75 eV for undoped and 2.50 eV for indium doped films respectively. The room temperature dark resistivity was found to be 4.545 × 103 Ω‐cm and 5.406 × 103 Ω‐cm for undoped and In‐doped films respectively.  相似文献   

7.
The optical properties of the Ga0.75In0.25Se crystals have been investigated by means of transmission and reflection measurements in the wavelength range of 380–1100 nm. The analysis of the results performed at room temperature revealed the presence of optical indirect transtions with band gap energy of 1.89 eV. The variation of the band gap energy as a function of temperature was also studied in the temperature range of 10–300 K. The rate of change of band gap energy (γ = –6.2 × 10–4 eV/K) and absolute zero value of the band gap (Egi(0) = 2.01 eV) were reported. The wavelength dependence of the refractive index was analyzed using Wemple and DiDomenico, Sellmeier and Cauchy models to find the oscillator energy, dispersion energy, oscillator strength and zero‐frequency refractive index values. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The optical properties of the TlInS2xSe2(1‐x)mixed crystals (0.25 ≤ x ≤ 1) have been investigated through the transmission and reflection measurements in the wavelength range of 400–1100 nm. The optical indirect band gap energies were determined by means of the analysis of the absorption data. It was found that the energy band gaps decrease with the increase of selenium atoms content in the TlInS2xSe2(1‐x)mixed crystals. The transmission measurements carried out in the temperature range of 10–300 K revealed that the rates of change of the indirect band gaps with temperature are γ = –9.2×10–4 eV/K, –6.1×10–4 eV/K, –4.7×10–4 eV/K and –5.6×10–4 eV/K for TlInS2, TlInS1.5Se0.5, TlInSSe and TlInS0.5Se1.5 crystals, respectively. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Nd:Gd3Ga5O12 crystals with different concentrations of Nd3+ were grown by Czochralski method, their absorption spectra were measured at room temperature. By using the optical absorption method, the effective distribution coefficient keff for Nd3+ in GGG was fitted to be 0.40±0.01, which is higher than that of Nd3+ in YAG. The 808nm absorption cross‐section was calculated to be 4.0±0.2×10‐20cm‐2. The lengthways and radial concentration distribution of Nd3+ in the crystals were also analyzed and discussed. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
CdS thin films of varying thicknesses were deposited on cleaned glass substrates at room temperature by thermal evaporation technique in a vacuum of about 2 x 10‐5 torr. UV‐VIS spectra of the films were studied using the optical transmittance measurements which were taken in the spectral region from 300 nm to 1100 nm. The absorbance and reflectance spectra of the films in the UV‐VIS region were also studied. Optical constants such as optical band gap, extinction coefficient, refractive index, optical conductivity and complex dielectric constant were evaluated from these spectra. All the films were found to exhibit high transmittance (∼ 60 ‐ 93 %), low absorbance and low reflectance in the visible/near infrared region from ∼ 500 nm to 1100 nm. The optical band gap energy was found to be in the range 2.28 – 2.53 eV. All the films annealed at 300°C for 4 hours in vacuum (∼ 10‐2 torr) showed a decrease in the optical transmittance with its absorption edge shifted towards the longer wavelength, leading to the result that the optical band gap decreases on annealing the films. Also, on annealing crystallinity of the films improves, resulting in decrease in the optical transmittance. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Polycrystalline β ‐GaSe thin films were obtained by the thermal evaporation of GaSe crystals onto glass substrates kept at 300 °C under a pressure of 10–5 Torr. The transmittance and reflectance of these films was measured in the incident photon energy range of 1.1–3.70 eV. The absorption coefficient spectral analysis in the sharp absorption region revealed a direct allowed transitions band gap of 1.83 eV. The data analysis allowed the identification of the dispersive optical parameters by calculating the refractive index in the wavelength region of 620–1100 nm. In addition, the photocurrent of the samples was studied as function of incident illumination‐intensity and temperature. The photocurrent is found to exhibit sublinear and supralinear character above and below 270 K, respectively. The temperature dependent photocurrent data analysis allowed the calculation of photocurrent activation energies as 603, 119 and 45 meV being dominant in the temperature regions of 250–300 K, 180–240 K and 80‐160 K, respectively. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Nanocrystalline and transparent conducting SnO2‐ ZnO films were fabricated by employing an inexpensive, simplified spray technique using a perfume atomizer at relatively low substrate temperature (360±5 °C) compared with conventional spray method. The structural studies reveal that the SnO2‐ZnO films are polycrystalline in nature with preferential orientation along the (101) plane. The dislocation density is very low (1.48×1015lines/m2), indicating the good crystallinity of the films. The crystallite size of the films was found to be in the range of 26–34 nm. The optical transmittance in the visible range and the optical band gap are 85% and 3.6 eV respectively. The sheet resistance increases from 8.74 kΩ/□ to 32.4 kΩ/□ as the zinc concentration increases from 0 to 40 at.%. The films were found to have desirable figure of merit (1.63×10–2 (Ω/□)–1), low temperature coefficient of resistance (–1.191/K) and good thermal stability. This simplified spray technique may be considered as a promising alternative to conventional spray for the massive production of economic SnO2 ‐ ZnO films for solar cells, sensors and opto‐electronic applications. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The presence of an impurity like rhodium in the platinum crucible used for the growth of KTiOPO4 (KTP) single crystals can have severe consequences in the performance of devices made from these crystals. In the present study the effect of rhodium incorporation has been investigated. Rhodium‐incorporated KTP crystals have a lower ionic conductivity (1.3 × 10–7 S/cm at 100 kHz) than pure KTP crystals (3.5 × 10–6 S/cm at 100 kHz) along the c‐axis. And the optical absorption in the green‐wavelength regime leads to a detrimental effect on their SHG performance. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Cadmium Oxide films have been prepared by vacuum evaporation method on a glass substrate at room temperature. Detailed structural, optical, and electrical properties of the films are presented at different annealing temperatures. The crystal structure of the samples was studied by X‐ ray diffraction. The spectral absorption coefficient of the CdO film at the fundamental absorption region (450‐650nm) was determined using the spectral data of transmittance. The direct and indirect band gap energies were determined and found to be 2.33 eV and 1.95 eV respectively. The third order optical nonlinearities χ(3) of CdO films has been measured used the z‐can technique. The real and imaginary parts of χ(3) have been measured at 514 nm and found to be 1.7x10‐3 esu and 3.0x10‐3 esu, respectively. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
A novel bis (dmit) complex of copper (II), [(C3H7)4N]2[Cu(dmit)2] ( 1 ), where dmit is 2‐thioxo‐1,3‐dithiole‐4,5‐dithiolate, was prepared and structurally characterized by X‐ray single crystal diffraction. The copper (II) atom is tetracoordinated by four dmit S atoms, forming a nearly square planar arrangement. The [Cu(dmit)2]2‐ anions and the [(C3H7)4N]+ counter‐cations form a three‐dimensional solid‐state structure by C–H…S hydrogen bonds. The third‐order nonlinear optical properties of the complex were determined by picosecond Z‐scan technique at a wavelength of 1064 nm. The results indicate the compound exhibits reverse saturation absorption and self‐defocusing performance. The molecular second‐order hyperpolarizability γ is calculated to be as high as (1.8±0.2)×10‐30 esu. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
A study of the optical properties of pure‐and some metal ions doped ammonium sulfate crystals (AS) were made. Optical constants of AS crystals were calculated at room temperature. The optical absorption coefficient (α ) was analyzed and interpreted to be in the allowed direct transition. The introduction of Rb+ or Cs+ ions gives rise to an intense charge transfer band with a maximum at λ= 310 nm in the optical spectrum. In case of Cr3+ ‐doping, the absorption shows a shoulder just before the onset band to band transition. The values of the allowed direct energy gap Eg for undoped and doped crystals were calculated. It was found that Eg values were decreased with metal ions doping. The refractive index, the extinction coefficient and both the real and imaginary parts of the dielectric permittivity were calculated as a function of photon energy. The validity of Cauchy‐Sellimeier equation was checked in the wavelength range 4.9 ‐ 5.6 eV and its parameters were calculated. Applying the Single‐Effective‐Oscillator model, the moments of ε (E ) could be estimated. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
GaSe thin films are obtained by evaporating GaSe crystals onto ultrasonically cleaned glass substrates kept at room temperature under a pressure of ∼10–5 Torr. The X‐ray analysis revealed that these films are of amorphous nature. The reflectance and transmittance of the films are measured in the incident photon energy range of 1.1–3.0 eV. The absorption coefficient spectral analysis revealed the existence of long and wide band tails of the localized states in the low absorption region. The band tails width is calculated to be 0.42 eV. The analysis of the absorption coefficient in the high absorption region revealed an indirect forbidden band gap of 1.93 eV. The transmittance analysis in the incidence photon wavelength range of 500–1100 nm allowed the determination of refractive index as function of wave length. The refractive index–wavelength variation leads to the determination of dispersion and oscillator energies as 31.23 and 3.90 eV, respectively. The static refractive index and static dielectric constant were also calculated as a result of the later data and found to be 9.0 and 3.0, respectively. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Good-quality single crystals of an efficient nonlinear optical (NLO) chalcone derivative 1-(5-chlorothiophen-2-yl)-3-(2,3-dichlorophenyl)prop-2-en-1-one (CTDCP) which meets many of the physicochemical requirements like transparency in the entire visible region, thermal stability, mechanical hardness have been achieved. The crystal belongs to orthorhombic system with the centrosymmetric space group Pbca. The third-order NLO properties were investigated using a single beam Z-scan technique with nanosecond laser pulses at 532 nm. The nonlinear refractive index is found to be of the order of 10?11 cm2/W. The magnitude of third-order susceptibility is of the order of 10?13 esu. The compound exhibits good optical limiting at 532 nm. The mechanical property of the crystals showed load dependent hardness. The static and frequency dependent molecular hyperpolarizabilities were computed using MOPAC 2012. Thermal study confirms that the crystal is dimensionally stable up to 179°C. The influence of direction of charge transfer on the nonlinearity of the molecule has been discussed in detail.  相似文献   

19.
The influence of the film thickness and substrate temperature on optical constants of the vacuum evaporated ZincPhthalocyanine (ZnPc) thin films have been reported in this paper. The direct and allowed optical band gap energy has been evaluated from the (αhυ)2 vs. (hυ) plots. The optical constants such as extinction coefficient (kf) and refractive index (n) have been evaluated from the transmittance values and the observed results strongly dependent on substrate temperature and film thickness. The low values of the refractive index have been observed for the films prepared at Ts=200°C. The change in crystallanity and phase transformation affect the optical constants and the lower values of the optical constants will leads to the good quality of the ZnPc thin films. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Thin films of antimony trisulfide (Sb2S3) were prepared by thermal evaporation under vacuum (p=5×10–5 torr) on glass substrates maintained at various temperatures between 293 K and 523 K. Their microstructural properties have obtained by transmission electron microscopy (TEM). The electron diffraction analysis showed the occurrence of amorphous to polycrystalline transition in the films deposited at higher temperature of substrates (523 K). The polycrystalline thin films were found to have an orthorhombic structure. The interplanar distances and unit‐cell parameters were determined by high‐resolution transmission electron microscopy (HRTEM) and compared with the standard values for Sb2S3. The surface morphology of Sb2S3 thin films was investigated by scanning electron microscopy (SEM). The optical transmission spectra at normal incidence of Sb2S3 thin films have been measured in the spectral range of 400–1400 nm. The analysis of the absorption spectra revealed indirect energy gaps, characterizing of amorphous films, while the polycrystalline films exhibited direct energy gap. From the photon energy dependence of absorption coefficient, the optical band gap energy, Eg, were calculated for each thin films. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号