首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface‐enhanced Raman scattering (SERS) spectra of hydroxyproline and one deuterated analogue are reported. In this work, we tackled the problem of SERS reproducibility by employing gold colloids instead of the usual silver sols to achieve plasmon enhanced Raman scattering. We slightly modified modified a previously published procedure to obtain to obtain the colloid, and concentrated the gold particles by centrifugation. The SERS spectra show distinctive bands of hydroxyproline, assigned by comparison to normal Raman spectra and density functional theory calculations. Repeated measurements using this procedure showed reproducible SERS spectra. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Anisotropic metallic nanoparticles (NPs) have unique optical properties, which lend them to applications such as surface‐enhanced Raman scattering (SERS) spectroscopy. Star‐shaped gold (Au) NPs were prepared in aqueous solutions by the seed‐mediated growth method and tested for Raman enhancement using 2‐mercaptopyridine (2‐MPy) and crystal violet (CV) probing molecules. For both molecules, the SERS activity of the nanostars was notably stronger than that of the spherical Au NPs of similar size. The Raman enhancement factors (EFs) for 2‐MPy on Au nanostars and nanorods are comparable and estimated as greater than 5 orders of magnitude. However, the enhancement for CV on nanostars was significantly higher than for nanorods, in particular at CV concentrations of 100 nM or lower. This article is a US Government work and is in the public domain in the USA. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

3.
Two different black silicon nanostructured surfaces modified with thin gold layers were tested for analytical signal enhancement with Surface‐Enhanced Raman Spectroscopy (SERS). The relationship between the thicknesses of the gold layers and the analytical signal enhancement was studied. Also, effects of Ti and Ti/Pt adhesion layers underneath the gold layers on the analytical signal enhancement were tested. An enhancement factor of 7.6 × 107 with the excitation laser 785 nm was achieved for the tested analyte, Rhodamine 6G, and non‐resonance SER spectra were recorded in a 5 s acquisition mode. Such an enhancement enables to achieve a detection limit down to 2.4 pg of Rhodamine 6G on a black silicon‐based nanosurface coated with a 400‐nm‐thin layer of gold. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents the application of Raman spectroscopy (RS) for the structural study of alizarin adsorbed on a metallic surface. As a biologically active molecule, alizarin has remarkable antigenotoxic activity like other anthraquinone dyes. Alizarin is highly fluorescent and that limits the application of RS as an investigation method; however, the Fourier transform‐RS (FTRS) can be applied since the near‐infrared excitation line lies far away from the absorption region of alizarin. The surface enhanced‐RS (SERS) technique also makes the fluorescence quenching possible. In this work, monolayers of alizarin were deposited on the surface of an electrode by the immersion of silver substrates in methanolic solution of the analyte. From such prepared samples, by using the excitation of 488, 514.5 and 647.1 nm the Raman spectra were registered. Depending on the excitation line, SERS or surface‐enhanced resonance Raman scattering (SERRS) spectra of alizarin were observed. The interpretation of experimental data was supported by theoretical calculations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
We report the observation of large surface‐enhanced Raman scattering (SERS) (106) for 4‐tert‐butylpyridine molecules adsorbed on a silver electrode surface in an electrochemical cell with electrode potential set at − 0.5 V. A decrease in electrode potential to − 0.3 V was accompanied by a decrease in relative intensities of the vibrational modes. However, there were no changes in vibrational wavenumbers. Comparison of both normal solution Raman and SERS spectra shows very large enhancement of the intensities of a1, a2, and b2 modes at laser excitation of 488 nm. Enhancement of the non‐totally symmetric modes indicates the presence of charge transfer as a contributor to the enhancement. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Raman and surface‐enhanced Raman scattering (SERS) spectra of dapsone by using colloidal silver nanoparticles have been recorded. Density functional theory was used for the optimization of ground state geometries and simulation of the vibrational spectrum of this molecule. The SERS spectrum with a large silver cluster as a model metallic surface was simulated for the first time. Taking into account the experimental and calculated Raman as well as the SERS normal modes and the corresponding assignments, along with the modeling of the free dapsone and the one in the presence of the colloidal silver nanoparticles, the importance of the sulfone group on the SERS effect in dapsone was inferred. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
As an infrared Raman probe, the molecule 3,3′‐diethylthiatricarbocyanine iodide (DTTC) has received much attention in the past decades due to its potential applications in Raman imaging, single‐cell detection, cancer diagnosis, and surface‐enhanced Raman scattering (SERS). In this work, ordinary Raman, SERS, and theoretical Raman spectra were investigated to estimate the DTTC suspension. More specifically, the original gold nanospheres (60 nm diameter) and gold nanorods were encoded with DTTC and stabilized with a layer of thiol–polyethylene glycol as Raman reporter; SERS data were also obtained from the samples. Hartree–Fock theory and density functional theory (DFT) calculation were applied to calculate the optimized Raman spectra of DTTC in water on the B3LYP/6‐31G level. Subsequently, the obtained experimental spectra from DTTC were carefully compared with the theoretically calculated spectra, and good agreement was obtained between the theoretical and experimental results.The bands between 500 and 3100 cm−1 in the ordinary Raman and SERS spectra were assigned as well. This work will facilitate the development of ultrasensitive SERS probes for advanced biomedical imaging applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Surface‐enhanced Raman scattering (SERS) spectra of tryptophan (Trp) were obtained. A unique SERS spectrum of Trp, corresponding to the most stable conformation and orientation on the metal surface, is observed after a stabilization period. The Trp molecules interact with the surface through both the carboxylate and amino groups; the aliphatic moiety is close to the surface. The pyrrole ring of the indole moiety is farther from the surface than the benzene fragment. The observed spectra vary depending on both the preparation of the silver colloid and the aggregation time. The interpretation of the experimental results is supported by theoretical treatment of the molecule on the silver surface. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Surface‐enhanced Raman spectroscopy (SERS) coupled with dendritic silver nanosubstrates was used in this study for rapid detection and characterization of restricted antibiotics. Dendritic silver nanosubstrates were prepared through a simple replacement reaction and stored in deionized water for months. SERS methods with near‐IR excitation at 785 nm using silver nanosubstrates were evaluated for detection of three restricted antibiotics (i.e. enrofloxacin, ciprofloxacin, and chloramphenicol) prepared in standard solutions. SERS was capable of identifying and characterizing three antibiotics quickly and accurately. Silver dendrites exhibit satisfactory and consistent performance with an analytical enhancement factor of ∼104. The limit of detection and limit of quantification for antibiotics could reach the level of 20 ppb. Silver dendrites can be kept in deionized water for up to 6 months with no signs of degradation in SERS performance. These results demonstrate a great potential of using SERS coupled with silver dendrites for rapid detection, classification, and quantification of chemical contaminants. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Surface‐enhanced Raman scattering (SERS) spectra of Ag@polypyrrole (PPy) nanoparticles with both 488 and 1064 nm excitation were investigated. Experimental results as well as theoretical analysis demonstrated that electromagnetic (EM) enhancement and charge transfer (CT) both rebounded to the SERS effect of Ag@PPy nanoparticles. When near‐IR excitation (1064 nm) was used for the SERS measurements, the contribution from CT was amplified relative to that from EM because the energy of the near‐IR excitation is far from the surface plasmon resonance of the nanosized Ag particles. The increased doping level of PPy, leading to optimal energy matching between the Fermi levels of the Ag nanoparticles and the energy levels in PPy molecules, could obviouslyenhance the SERS signal. These results suggested that the SERStechnique wasan effective tool for investigating the doping effect and interface interaction in metal‐conductingpolymer composite nanoparticles. In particular, the SERS technique with near‐IR excitation could give more information regarding the contribution of the charge‐transfer mechanism to the spectral enhancement of this kind of system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Combining membrane electrophoresis with surface‐enhanced Raman scattering (SERS) spectroscopy, the serum proteins were first purified and then mixed with silver nanoparticles to perform SERS spectral analysis. Therefore, the spectral signatures were enhanced to high‐fidelity SERS signatures because of the purification procedure of the first step. We used the method to analyze blood plasma samples from nasopharyngeal cancer patients (n = 43) and healthy volunteers (n = 33) for cancer detection. Principle component analysis of the SERS spectra revealed that the data points for the cancer group and the normal group form distinct, completely separated clusters with no overlap. Therefore, the nasopharyngeal cancer group can be unambiguously discriminated from the normal group, i.e., with both diagnostic sensitivity and specificity of 100%. These results are very promising for developing a label‐free, noninvasive, and reliable clinical tool for rapid cancer detection and screening. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Reactive ion etching was used to fabricate black‐Si over the entire surface area of 4‐inch Si wafers. After 20 min of the plasma treatment, surface reflection well below 2% was achieved over the 300–1000 nm spectral range. The spikes of the black‐Si substrates were coated by gold, resulting in an island film for surface‐enhanced Raman scattering (SERS) sensing. A detection limit of 1 × 10?6 M (at count rate > 102 s?1 . mW?1) was achieved for rhodamine 6G in aqueous solution when drop cast onto a ~ 100‐nm‐thick Au coating. The sensitivity increases for thicker coatings. A mixed mobile‐on‐immobile platform for SERS sensing is introduced by using dog‐bone Au nanoparticles on the Au/black‐Si substrate. The SERS intensity shows a non‐linear dependence on the solid angle (numerical aperture of excitation/collection optics) for a thick gold coating that exhibits a 10 times higher enhancement. This shows promise for augmented sensitivity in SERS applications.  相似文献   

13.
Polymethoxyflavones (PMFs) belong to a unique class of flavonoids mainly found in citrus fruits. Characterization of different PMFs is important to further understand and apply these compounds as functional ingredients in food. The objective of this study is to characterize three monohydroxylated PMFs using surface‐enhanced Raman spectroscopy (SERS) and to determine the role of hydroxylation in their SERS behaviors. Serial concentrations of 3′‐hydroxylnobiletin (3HN), 4′‐hydroxylnobiletin (4HN), and 5‐hydroxylnobiletin (5HN) were incubated with silver dendrites for SERS analysis. Results demonstrated that three PMFs exhibited significantly different SERS behaviors. 5HN produced saturation peak intensity at relative low concentration (0.05 mM), while 3HN and 4HN produced saturation peak intensity at much higher concentrations (0.5 and 1 mM, respectively) according to principal component analysis. Below saturation, 5HN had the highest peak intensity, while 3HN had the lowest peak intensity. After reaching saturation, 4HN and 5HN had similar relative peak intensities that were much greater than 3HN. The HPLC analysis revealed that 36.13 ± 1.06% of 5HN, 18.40 ± 3.31% of 4HN, and 9.66 ± 0.94% of 3HN were bound to silver. Based on these results, we speculated that different positions of hydroxylation of PMFs were critical for determining spatial conformation of PMFs on binding sites, resulting in different binding affinities and saturation points, therefore their SERS behaviors. This study first reported that the position of hydroxylation in the monohydroxylated PMFs was crucial for their interactions with silver dendrites and provided valued information for further applying SERS for molecular characterization of flavonoids. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Quaternary protoberberine alkaloids are a class of natural dyes characterized by bright colors ranging from yellow to orange. As they present a strong fluorescence emission, their analysis by Raman spectroscopy is limited to specific techniques such as Fourier transform (FT)‐Raman and spectral shift Raman techniques such as shifted subtracted Raman difference spectroscopy (SSRDS) and shifted excitation Raman difference spectroscopy (SERDS). In a previous article, we successfully used surface‐enhanced Raman scattering (SERS) in the analysis of the alkaloid dye berberine in an ancient textile. The examination of the Raman and SERS spectra of berberine in combination with density functional theory (DFT) calculations indicated a flat adsorption geometry of the molecule on the Ag surface. In this article we extend that work to the study of related protoberberine alkaloids, palmatine, jatrorrhizine, and coptisine. The same adsorption geometry as in berberine was deduced. We found that the four alkaloids, although minimally different in their chemical structures, could be differentiated by the position of marker bands. Those bands are the most enhanced ones in the SERS spectra, which appear in the 700–800 cm−1 region. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Surface‐enhanced Raman scattering (SERS) constitutes a spectroscopic method of rapidly growing importance, and polystyrene is a widely used compound of great industrial importance. In this work, SERS data were obtained from polystyrene samples prepared by vapor deposition of gold and plasma‐induced polymerization of styrene gas. A thorough examination of this data is presented. The relationships between sample preparation parameters, gold‐cluster morphology, and SERS intensity were elucidated. Using Wilson's notation, vibrations were assigned to all bands between 250 and 1750 cm−1 in the ordinary Raman and SERS spectra of polystyrene. The correct assignment of these bands would be a significant achievement because they have been controversial in the literature for ∼30 years. Our assignments were made by reviewing the literature and comparing the assignments found there to spectral data acquired during this study; they were confirmed using density functional theory (DFT) calculations performed on the styrene monomer. The orientation of polystyrene's phenyl ring, relative to the gold surface, was determined. It has been suggested that reactions involving silver catalyze polystyrene degradation during SERS, but we found that silver is not necessary for the degradation to occur. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Carbon nanotubes (CNTs) have attracted great attention for their potential use in many applications because of their intrinsic properties. The importance other than the impact of the application of CNT‐embedded membranes in the area of water technology development is immense. In this context, the identification and quantification of CNTs in aqueous resources during relevant water purification processes can be proven of high significance. Surface‐enhanced Raman scattering (SERS) potentially has the sensitivity required for trace analysis and has been previously used for CNT identification on solid substrates. A thorough study for the identification and quantification of small concentrations of multi‐walled CNTs (MWCNTs) in water suspensions via SERS has been performed. The functionalization of MWCNTs with pyridine groups seems to favor the surface enhancement of relevant Raman signal. This study constitutes the first step of a work in progress for the characterization of CNTs at quite low concentration range by SERS in any water suspension. It is based on an ex ante functionalization of the CNTs by pyridine, demonstrating the potential of the method. Our long‐term aim is its general application built, however, in an ex post relevant functionalization of the CNTs in any aqueous solution. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
We utilized bulk‐synthesized nanowires (NWs) of germanium dioxide as nanoscale structures that can be coated with noble metals to allow the excitation of surface plasmons over a broad frequency range. The NWs were synthesized on substrates of silicon using gold‐catalyst‐assisted vapor–liquid–solid (VLS) growth mechanism in a simple quartz tube furnace setup. The resulting NWs have diameters of ∼100–200 nm, with lengths averaging ∼10–40 µm and randomly distributed on the substrate. The NWs are subsequently coated with thin films of gold, which provide a surface‐plasmon‐active surface. Surface‐enhanced Raman scattering (SERS) studies with near‐infrared (NIR) excitation at 785 nm show significant enhancement (average enhancement > 106) with good uniformity to detect submonolayer concentrations of 4‐methylbenzenethiol (4‐MBT), trans‐1,2‐bis(4‐pyridyl)ethylene (BPE), and 1,2‐benzendithiol (1,2‐BDT) probe molecules. We also observed an intense, broad continuum in the Raman spectrum of NWs after metal coating, which tended to diminish with the analyte monolayer formation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The adsorption of aniline on a silver mirror was studied by surface‐enhanced Raman scattering (SERS) spectroscopy and density functional theory (DFT) calculation methods. The normal Raman and SERS spectra of pure aniline liquid and its solutions were recorded by a micro‐Raman spectrometer with excitation at 514.5 nm. Orientation of the aniline molecule adsorbed on the Ag mirror is discussed. The results indicate that pure aniline is adsorbed on the surface of the Ag mirror with a tilted orientation. The conformer with the nitrogen atom interacting with the metal surface would be dominant. DFT calculations further confirm the experimental results that charge transfer (CT) takes place from the highest occupied molecular orbital(HOMO) of aniline to the singly occupied molecular orbital (SOMO) of the silver surface. In this paper, the frontier molecular orbital theory has been successfully used to explore the interaction between the aniline molecule and the silver surface. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The Surface‐enhanced Raman scattering of benzenesulfonamide and sulfanilamide adsorbed on silver sols was studied. On the basis of the noticeable shifts observed for wavenumbers of the νs(OSO), ν(CS), and ν(SN) vibrations with respect to the Raman spectra of the solids and the ionic solutions, we conclude that these molecules are adsorbed on silver nanoclusters at pH ≥ 7 with the aminosulfonyl groups partially deprotonated. The benzenesulfonamide links to the metal through the nitrogen atom of the corresponding azanion, while the sulfanilamide interacts in turn through the nitrogen atoms of the –NH2 and –SO2NH groups in the para‐position. Additionally, it was found that the most enhanced surface‐enhanced Raman scattering bands, especially the 8a;νring mode, are related to the presence of the charge transfer mechanism. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Transition‐metal‐doped semiconductor nanoparticles (NPs) have been well studied for their optical and catalytic properties but seldom studied by surface‐enhanced Raman scattering (SERS). In this paper, transition‐metal‐doped semiconductor NPs are investigated for their SERS property. Four groups of Co‐doped (0.5, 1, 3, and 5%) ZnO (Co ZnO) NPs and pure ZnO NPs were synthesized and studied. When 4‐mercaptobenzoic acid was used as probing molecule, significant SERS signals were obtained on all the five samples. Moreover, it is very interesting to observe a relationship between the Co‐doping concentration and enhancement of the SERS signals. SERS intensities first increase with doping concentration (up to 1%), and then decrease with further increase in doping concentration (up to 5%). Charge transfer (CT) is considered to be the main contribution to this phenomenon. Different CT ratios from substrates to molecules seem to induce different intensities of the SERS signals. In our experiments, the crystalline defects of Co ZnO NPs caused by the Co dopant affect the CT ratios. A possible mechanism of CT from the valance band of Co ZnO NPs to the lower unoccupied molecular orbital of the molecules via energy of the surface states is suggested. X‐ray photoelectron spectra, UV vis spectra, and Raman spectra were used to characterize the structure and defects in Co ZnO NPs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号