首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We report the observation of large surface‐enhanced Raman scattering (SERS) (106) for 4‐tert‐butylpyridine molecules adsorbed on a silver electrode surface in an electrochemical cell with electrode potential set at − 0.5 V. A decrease in electrode potential to − 0.3 V was accompanied by a decrease in relative intensities of the vibrational modes. However, there were no changes in vibrational wavenumbers. Comparison of both normal solution Raman and SERS spectra shows very large enhancement of the intensities of a1, a2, and b2 modes at laser excitation of 488 nm. Enhancement of the non‐totally symmetric modes indicates the presence of charge transfer as a contributor to the enhancement. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The substrate‐dependent surface‐enhanced Raman scattering (SERS) of 4‐aminobenzenethiol (4‐ABT) adsorbed on Au surfaces has been investigated. 4‐ABT is one of the very unique adsorbate molecules whose SERS spectral patterns are known to be noticeably dependent on the relative contribution of chemical enhancement mechanism vs electromagnetic enhancement mechanism. The SERS spectral patterns of 4‐ABT adsorbed on gold substrates with various surface morphology have thus been analyzed in terms of the symmetry types of the vibrational modes. Almost invisibly weak b2 type vibrational bands were observed in the SERS spectra of the 4‐ABT adsorbed on Au colloidal sol nanoparticles or commercially available Au micro‐powders because of the weak contribution of the chemical enhancement. However, greatly enhanced b2 vibrational bands were observed in the spectra of the 4‐ABT molecules adsorbed on the synthesized Au(Zn) sponge or the electrochemically roughened Au(ORC) foil caused by the strong contribution of the chemical enhancement mechanism. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
ABSTRACT

Vibrational spectroscopy of tolane (diphenylacetylene), which has 66 normal modes, has been advanced. Anharmonic wavenumber predictions were made with the quartic potential energy surface obtained with B3LYP/cc-pVTZ model and the second-order perturbation theory (VPT2). Infrared (IR) intensity and Raman activities were computed at the harmonic level. The IR spectrum of the crystal and Raman spectra of the liquid and the crystal tolane were newly recorded. The lingering problem of an excess of polarised Raman bands at wavenumbers appropriate for fundamentals, other than ag modes, has now been attributed to Coriolis coupling within modes of g symmetry species. Consequently, D2h point symmetry group has been confirmed for a planar tolane molecule. Assignments for almost all fundamentals of tolane are now secure. The assignment for ν32 remains questionable. Remaining unassigned fundamentals are: ν34 and ν35, which, as au symmetry species, are IR- and Raman-inactive transitions, and ν59(b2u), which is predicted to have a very low wavenumber.  相似文献   

4.
There has been a surge of interest in the surface‐enhanced Raman scattering (SERS) of p‐aminothiophenol (PATP), since its SERS spectra are dependent on the measurement conditions. However, there is a dispute over the origin of the so‐called b2 modes in SERS spectrum of PATP recently. Some researchers propose that these bands come from selective chemical enhancement, while others conclude that these bands are due to the ag modes of p,p'‐dimercaptoazobenzene (DMAB) produced from PATP by surface photoreaction. To solve this problem, we have studied the SERS spectra of PATP on Au and Ag nanoparticles by in situ measurement under various conditions. The results proved that the b2 modes are not due to PATP but due to the ag modes of DMAB. The key of the method is to ensure the SERS spectra taken from the same point in reduplicative measurements. The result showed that the stable SERS spectrum of PATP was essentially from DMAB. The reversibility of the PATP SERS spectra in previous studies is due to the variety of the measurement points, which is in nature of different PATP conversions to DMAB under different conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
To better understand experimentally observed surface‐enhanced Raman Scattering (SERS) of polychlorinated biphenyls (PCBs) adsorbed on nanoscaled silver substrates, a systematic theoretical study was performed by carrying out density functional theory and time‐dependent density functional theory calculations. 2,2′,5,5′‐tetrachlorobiphenyl (PCB52) was chosen as a model molecule of PCBs, and Agn (n = 2, 4, 6, and 10) clusters were used to mimic active sites of substrates. Calculated normal Raman spectra of PCB52–Agn (n = 2, 4, 6, and 10) complexes are analogical in profile to that of isolated PCB52 with only slightly enhanced intensity. In contrast, the corresponding SERS spectra calculated at adopted incident light are strongly enhanced, and the calculated enhancement factors are 104 ~ 105. Thus, the experimentally observed SERS phenomenon of PCBs supported on Ag substrates should correspond to the SERS spectra rather than the normal Raman spectra. The dominant enhancement in Raman intensities origins from the charge transfer resonance enhancement between the molecule and clusters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
In order to resolve the dispute on the origin of the b2‐type bands in the surface‐enhanced Raman scattering (SERS) of 4‐aminobenzenethiol (4‐ABT), we have measured its SERS spectra under a variety of conditions, including variable temperature and rotation, electrochemistry, and pH, as well as in the presence of a reducing agent. For comparison, the SERS spectra of 4‐nitrobenzenethiol (4‐NBT) and methyl orange (MO), a prototype azo compound, were also measured. First, we found that 4‐ABT on Ag is not subjected to photoreaction, although 4‐NBT is highly photoreactive on a silver surface. In the electrochemical environment, b2‐type bands of 4‐ABT lost their intensity at very negative potentials, but the intensity recovered immediately upon raising the potential. In addition, b2‐type bands were observed under rotation even after lowering the potential. The disappearance and reappearance of the b2‐type bands could also be observed by bringing the sample of 4‐ABT on Ag into contact consecutively with a borohydride solution and water. This is because the surface potential of Ag is lowered by contact with a borohydride solution. Besides, we found that not only the normal Raman but also the SERS spectral features of 4‐ABT are hardly affected by pH variation, while the spectral features of MO are greatly affected, especially in the region of the NN stretching vibration, suggesting that the possibility of a photoconversion of 4‐ABT to an azo compound is low. Altogether, the b2‐type bands were attributed to 4‐ABT, appearing in conjunction with the chemical enhancement mechanism in SERS. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
We achieved single‐molecule surface‐enhanced Raman scattering (SM‐SERS) spectra from ultralow concentrations (10−15 M) of fullerene C60 on uniformly assembled Au nanoparticles. It was found that resonant excitation at 785 nm is a powerful tool to probe SM‐SERS in this system. The appearance of additional bands and splitting of some vibrational modes were observed because of the symmetry reduction of the adsorbed molecule and a relaxation in the surface selection rules. Time‐evolved spectral fluctuation and ‘hot spot’ dependence in the SM‐SERS spectra were demonstrated to result from the single‐molecule Raman behavior of the spherical C60 on Au nanoparticles. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
We present surface‐enhanced Raman scattering (SERS) spectra of the RNA nucleosides adenosine, cytidine, guanosine and uracil and the methylated derivatives 5‐methylcytidine and 7‐methylguanosine, a class of important nucleic acid components that has not previously been well characterised using SERS spectroscopy. Our work shows that the selection of aggregating agent plays a crucial role for SERS analysis of these nucleosides with K2SO4 generating immediate enhancement while NaCl only gave immediate enhancement for the pyrimidine nucleosides. The SERS spectra contain a number of marker bands that are highly sensitive to structural differences between these nucleosides, in particular methylation, and at lower concentration ranges than are possible for conventional Raman scattering. Finally, spectral analyses and assignments of the vibrational modes responsible for these marker bands are also presented, and the effect of the aggregating agent on these modes is discussed in terms of interactions between each nucleoside and the metal surface. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A systematic study on the surface‐enhanced Raman scattering (SERS) for 3,6‐bi‐2‐pyridyl‐1,2,4,5‐tetrazine (bptz) adsorbed onto citrate‐modified gold nanoparticles (cit‐AuNps) was carried out based on electronic and vibrational spectroscopy and density functional methods. The citrate/bptz exchange was carefully controlled by the stepwise addition of bptz to the cit‐AuNps, inducing flocculation and leading to the rise of a characteristic plasmon coupling band in the visible region. Such stepwise procedure led to a uniform decrease of the citrate SERS signals and to the rise of characteristic peaks of bptz, consistent with surface binding via the N heterocyclic atoms. In contrast, single addition of a large amount of bptz promoted complete aggregation of the nanoparticles, leading to a strong enhancement of the SERS signals. In this case, from the distinct Raman profiles involved, the formation of a new SERS environment became apparent, conjugating the influence of the local hot spots and charge‐transfer (CT) effects. The most strongly enhanced vibrations belong to a1 and b2 representations, and were interpreted in terms of the electromagnetic and the CT mechanisms: the latter involving significant contribution of vibronic coupling in the system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The degree of charge‐transfer in Ag–4‐mercaptopyridine (Mpy) and Ag2S–4‐Mpy systems is investigated by use of surface‐enhanced Raman spectroscopy (SERS). Ag2S and Ag2Se nanoparticles are prepared on the basis of the former formation of Ag nanoparticles to make the SERS analytical objects comparable. We utilize the intensity of the non‐totally symmetric modes (either b1 or b2) as compared with the totally symmetric a1 modes to measure the degree of charge‐transfer. We find ~25% of charge‐transfer contribution for Ag–4‐Mpy, whereas 81 ~ 93% for Ag2S–4‐Mpy. It means that the charge‐transfer resonance contribution dominates the overall enhancement in SERS of Ag2S–4‐Mpy. Energy level diagram is applied to discuss the likely charge‐transfer transition between Ag, Ag2S, Ag2Se and 4‐Mpy. This article may point out the link among the three main resonance sources and could enable some insights into the electronic pathways available to the metal‐molecule and semiconductor‐molecule systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The Jahn-Teller (J-T) effect in systems of four-fold symmetry is well known to differ from that in all other point groups with respect to the nature of the J-T active normal modes of vibration. The present report addresses some previously unnoticed features which are of intrinsic importance in recognizing and understanding the unique manifestations of quadrate symmetry in both the static and dynamic Jahn-Teller effects. We first consider the nature of the static J-T potential surfaces when coupling to and strains in two modes, b 1 and b 2, are included in the hamiltonian.

The second part of this paper is devoted to an examination of the dynamic J-T effect in four-fold systems. Utilizing both perturbation theory and numerical solution to the Schrödinger equation, we examine the spin-hamiltonian parameters for a metalloporphyrin 3 Eu triplet state and discuss some dynamical processes, including reorientation of the system between minima, spin-lattice relaxation, and the dependences of these phenomena on the nature and magnitude of the off-diagonal terms in the hamiltonian. There emerge from this analysis several signal differences between the Jahn-Teller effect for a doubly degenerate state in four-fold systems and in the more usual cubic or tetrahedral situation.  相似文献   

12.
用密度泛函理论B3LYP方法和6-311G(d,p)/Lanl2DZ优化得到黄曲霉素B1(AFB1)分子及其复合物AFB1-Ag的稳定结构,并计算了复合物的表面增强拉曼光谱和预共振拉曼光谱. 结果表明,AFB1分子的拉曼光谱很大程度依赖于吸附位点以及入射光的激发波长. 与分子的常规拉曼光谱相比,复合物表面增强拉曼光谱中C=O伸缩振动模的增强因子约为102~103复合物的极化率增强而导致的静态化学增强,并分析了振动模式的振动方向与其拉曼强度的关系.选择复合物最大吸收峰附近激发光266和482 nm以及远离共振吸收波长785和1064 nm作为入射光,计算得到不同入射光激发下复合物的预共振拉曼光谱.结果表明其增强因子最大达到104量级,主要是由电荷转移产生的共振增强引起的.  相似文献   

13.
The fine structure of the fundamental vibrational bands and some combination tones of fullerite C60 in its IR absorption and reflection spectra, as well as in Raman spectra, has been studied. This structure is due to the overlapping components of Davydov and isotopic splittings and the removal of vibrational degeneracy with symmetry lowering. It is shown that for IR F u (i) bands (i = 1–4) and low-frequency H g (1) and A g (1) bands in the Raman spectrum the splittings at room temperature exceed those for the low-temperature phase. The enhancement of intermolecular interaction at elevated temperatures is explained by the nonequilibrium vibrational excitation of the medium as a result of nonlinear interaction of vibrational modes and by the change in the electronic states.  相似文献   

14.
We report a two‐step enhancement of Raman scattering signal (η) of a few dye molecules. In the first step, high‐quality surface‐enhanced Raman scattering (SERS) substrates have been used. The SERS substrates were fabricated by direct current sputtering of Au followed by thermal annealing. The role of thermal annealing of the SERS substrates and numerical aperture of Raman microscopic objective lens on the enhancement has been studied for optimizing the enhancement in the SERS technique. In the second step, the value of η obtained with conventional SERS technique has been improved significantly with the help of photonic nanojet (PNJ) of an optical microsphere (PNJ‐mediated SERS technique). The signal to noise ratio and reproducibility of the experimental results have been found to be very high. Based on our theoretical simulations on PNJ, a few suitable parameters have been proposed for obtaining better enhancement using this technique. To the best of our belief, this report will enable the SERS community to improve η value with ease. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Silver thiolate is a layered compound with a Raman spectrum that is known to change with time, becoming the same as the surface‐enhanced Raman scattering (SERS) spectrum of the parent thiol molecule adsorbed on Ag nanoparticles. On this basis, the Raman scattering characteristics of silver 4‐aminobenzenethiolate (Ag‐4ABT) compounds were investigated to determine whether certain peaks that are identifiable in the SERS spectrum of 4‐aminobenzenethiol (4‐ABT) but absent in its normal Raman spectrum were also apparent in the Ag salt spectrum. For comparative purposes, the Raman scattering characteristics of silver 4‐dimethylaminobenzenethiolate (Ag‐4MABT) were also examined. Raman spectra acquired while spinning the sample were typified by only a1‐type vibrational bands of Ag‐4ABT and Ag‐4MABT, whereas in the static condition, several non‐a1‐type bands were identified. The spectral patterns acquired in the static condition were similar to the intrinsic SERS spectra of 4‐ABT or 4‐dimethylaminobenzenethiol (4‐MABT) adsorbed on pure Ag nanoparticles. Notably, the CH3 group vibrational bands were observable for Ag‐4MABT irrespective of the sample rotation. In addition, no decrease in intensity during irradiation with a visible laser was observed for any of the bands, suggesting that no chemical conversion actually took place in either 4‐ABT or 4‐MABT. The preponderance of evidence led to the conclusion that the non‐a1‐type bands observable in the SERS spectra must be associated with the chemical enhancement mechanism acting on the Ag nanoparticles. The chemical enhancement effect was more profound at 514.5 nm than at 632.8 nm, and was more favorable for 4‐ABT than 4‐MABT at both wavelengths. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Measurement and interpretation of the excitation wavelength dependence of surface‐enhanced Raman scattering (SERS) spectra of molecules chemisorbed on plasmonic, e.g. Ag nanoparticle (NP) surfaces, are of principal importance for revealing the charge transfer (CT) mechanism contribution to the overall SERS enhancement. SERS spectra, their excitation wavelength dependence in the 445–780‐nm range and factor analysis (FA) were used for the identification of two Ag‐2,2′:6′,2″‐terpyridine (tpy) surface species, denoted Ag+–tpy and Ag(0)–tpy, on Ag NPs in systems with unmodified and/or purposefully modified Ag NPs originating from hydroxylamine hydrochloride‐reduced hydrosols. Ag+–tpy is a spectral analogue of [Ag(tpy)]+ complex cation, and its SERS shows virtually no excitation wavelength dependence. By contrast, SERS of Ag(0)–tpy surface complex generated upon chloride‐induced compact aggregate formation and/or in strongly reducing ambient shows a pronounced excitation wavelength dependence attributed to a CT resonance (the chemical mechanism) contribution to the overall SERS enhancement. Both the resonance (λexc = 532 nm) and off‐resonance (λexc = 780 nm) pure‐component spectra of Ag(0)–tpy obtained by FA are largely similar to surface‐enhanced resonance Raman scattering (λexc = 532 nm in resonance with singlet metal to ligand CT (1 MLCT) transition) and SERS (λexc = 780 nm) spectra of [Fe(tpy)2]2+ complex dication. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A near‐infrared surface‐enhanced Raman spectroscopy (NIR‐SERS) method was employed for oxyheamoglobin (OxyHb) detection to develop a simple blood test for liver cancer detection. Polyvinyl alcohol protected silver nanofilm (PVA‐Ag nanofilm) used as the NIR‐SERS active substrate to enhance the Raman scattering signals of OxyHb. High quality NIR‐SERS spectrum from OxyHb adsorbed on PVA‐Ag nanofilm can be obtained within 16 s using a portable Raman spectrometer. NIR‐SERS measurements were performed on OxyHb samples of healthy volunteers (control subjects, n = 30), patients (n = 40) with confirmed liver cancer (stage I, II and III) and the liver cancer patients after surgery (n = 30). Meanwhile, the tentative assignments of the Raman bands in the measured NIR‐SERS spectra were performed, and the results suggested cancer specific changes on molecule level, including a decrease in the relative concentrations and the percentage of aromatic amino acids of OxyHb, changes of the vibration modes of the CaHm group and pyrrole ring of OxyHb of liver cancer patients. In this paper, principal component analysis (PCA) combined with independent sample T test analysis of the measured NIR‐SERS spectra separated the spectral features of the two groups into two distinct clusters with the sensitivity of 95.0% and the specificity of 85.7%. Meanwhile, the recovery situations of the liver cancer patients after surgery were also assessed using the method of discriminant analysis‐predicting group membership based on PCA. The results show that 26.7% surgeried liver cancer patients were distinguished as the normal subjects and 63.3% were distinguished into the cancer. Our study demonstrated great potentials for developing NIR‐SERS OxyHb analysis into a novel clinical tool for non‐invasive detection of liver cancers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Seselin, C14H12O3, is a coumarin which crystallizes in a monoclinic structure P21/b(C2h5) with four molecules per unit cell. In a Fourier‐transform Raman spectroscopic study performed at room temperature, several normal modes were observed. Vibrational wavenumber and wave vector calculations using density functional theory were compared with experiment, which allowed the assignment of a number of normal modes of the crystal. Temperature‐dependent Raman spectra were recorded between 10 and 300 K. No anomalies were observed in the phonon spectra, indicating that the monoclinic structure remains stable. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Surface‐enhanced Raman spectroscopy (SERS) is a unique technique to study submembrane hemoglobin (Hbsm) in erythrocytes. We report the detailed design of SERS experiments on living erythrocytes to estimate dependence of the enhancemen t factor for main Raman bands of Hbsm on silver nanoparticle (AgNP) properties. We demonstrate that the enhancement factor for ν 4/A1g, ν 10/B1g and A2g Raman bands of Hbsm varies from 105 to 107 under proposed experimental conditions with 473 nm laser excitation. For the first time we show that the enhancement of Raman scattering increases with the increase in the relative amount of small NPs in colloids, with the decrease in AgNP size and with plasmon resonance shift to the shorter wavelength region. Obtained results can be explained by the ability of smaller AgNPs to get deeper into nano‐invaginations of the plasma membrane than larger AgNPs. This shortens the distance between small AgNPs and Hbsm and, consequently, leads to the higher enhancement of Raman scattering of Hbsm. The enhancement of higher wavenumber bands ν 10/B1g and A2g is more sensitive to AgNPs’ size and the relative amount of small AgNPs than the enhancement of the lower wavenumber band ν 4/A1g. This can be used for AgNP‐controlled enhancement of the desired Raman bands and should be taken into account in biomedical SERS experiments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
In Dy3+ and Li+ codoped ZnO nanowires, the additives accumulate preferentially in {0001} planes, resulting in serious breakdown of the translational symmetry in ab plane and modification of the phonon oscillation field. Not only acoustic overtones, silent optical modes, surface optical (SO) phonon modes, and multi‐phonon processes can be effectively observed in the nonresonant Raman scattering (RS) and the Fourier‐transform infrared (FTIR) spectra, but the quasi‐LO and TO modes of mixed A1 and E1 symmetry also show a noticeable red shift from E1 symmetry (in ab plane) to A1 symmetry (along c axis). The presence of dislocations and internal strain at the surface layer rich in additives, coming from the segregation of additives, forms a quasi‐bilayer system, resulting in the appearance and enhancement of SO phonon modes in RS and FTIR spectra. The Fano interference, originating from the interaction between the discrete scattering from phonons and the continuum scattering from laser‐induced electrons in the doped nanostructures, leads to typical asymmetric lineshapes on the lower wavenumber sides. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号